

ABSTRACT. The Delft Java Processor (DJP) is a
hardware approach aiming at accelerating bytecode
execution. One of the critical tasks in a JVM that could
benefit from hardware support is garbage collection. To
efficiently perform garbage collection in the DJP we have
to better understand the general garbage collection related
issues in real life situations. In this respect we provide in
this paper a study of the dynamic allocation behavior of
Java programs based on the SPECjvm98 benchmark suite.
Age, size and type distribution of Java objects are
presented and interpreted from the general point of view
of garbage collection, together with other garbage
collection related measurements. Thus we can identify the
features of an efficient DJP dedicated garbage collector
and propose supporting architectural extension(s) in the
DJP. The study confirms the weak generational
hypothesis according to which objects are most likely to
die very young, suggesting that a collector with two
generations could improve garbage collection
performance with corresponding hardware support. To
fully take advantage of the generational hypothesis
efficient hardware-implemented write barriers are needed.
Hardware support is also recommended for describing the
dynamic layout of the stack (stack pointer map) for
accurate garbage collection.

KEYWORDS: Java, Garbage Collection

1. INTRODUCTION

One of the main drawbacks of Java, and of languages
based on virtual machines in general, is that program
execution can not be as fast as the equivalent solution in a
fully compiled language, as the execution process is
interpretation based. In this direct interpretation approach
a software program emulates the Java Virtual Machine
(JVM). To improve performance and yet maintain the
flexibility, a number of Java execution alternative
techniques have been proposed. Just-in-time compilers,
off-line compilers, native compilers are among them.
Sun's picoJava implementation [1] for example directly
executes the JVM Instruction Set and also provides
support for garbage collection, instruction optimization,
method invocation and synchronization. New
technologies for improving Java programs performances

covering the compiling process, garbage collection and
synchronization, have recently been proposed in Sun’s
Hotspot JVM [2].

Another approach to hardware acceleration is dynamic
instruction translation. To the best of our knowledge, the
Delft-Java Processor [3] is the only processor to
incorporate this feature.

In hardware assisted dynamic translation, Java Virtual
Machine instructions are translated on the fly into the
Delft-Java instruction set. The hardware requirements to
perform this translation are not excessive when support
for Java language constructs are incorporated into the
processor's Instruction Set Architecture (ISA). The Java
language provides processor architects with opportunities
for exploiting Instruction Level Parallelism (ILP). Rather
than requiring the processor to extract all ILP from a
single executing thread, the Java language intrinsically
supports programmer specification of parallelism through
threads. In the Delft-Java architecture the goal is to
extract maximal parallelism as defined by the Java
language without burdening the programmer to specify
any additional parallelism that is not inherent in the
language constructs. At the highest level a programmer
views the DJP as a Java Virtual Machine. In the Delft-
Java approach, Java Virtual Machine execution is enabled
by translating Java Virtual Machine bytecode into the
Delft-Java RISC-based architecture. Special ISA support
is provided for more complex Java Virtual Machine
instructions. In addition to JVM execution, the Delft-Java
architecture provides general support for C compilers and
other operations that are required in general purpose
processors. Architectural support for Multimedia SIMD
and Digital Signal Processing (DSP) is also incorporated
into the architecture.

The intended capabilities of the Delft-Java processor
also include architectural support for synchronization for
multithreaded organizations, garbage collection, array
bounds checking, and vector operations [4].

Hardware support for the garbage collection is very
important for the performance of the DJP when used as a
JVM. In this work we analyze the general features of
dynamic memory allocation of Java programs aiming at
finding the appropriate garbage collection scheme in a
JVM. Establishing a general pattern of dynamic memory
allocation for Java programs is important, as a garbage

* “Politehnica” University of Bucharest
Computer Science Department

Bucharest, Romania

#Delft University of Technology
Faculty of Electrical Engineering

Delft, The Netherlands

$IBM T.J. Watson Research Center
Yorktown Heights, NY 10598

USA

GARBAGE COLLECTION FOR THE DELFT JAVA PROCESSOR
A. BERLEA* S. COTOFANA# I. ATHANASIU* J. GLOSSNER#,$ S.VASSILIADIS#

232

M. HAMZA

M. HAMZA

collector can be best tailored when this pattern is known.
Based on the observations made, actions the DJP could
take to support garbage collection are suggested.
Programs from the SPECjvm98 benchmark suite released
by the System Performance Evaluation Corporation [5]
are used as relevant, real-world Java programs for our
study. These benchmarks are considered relevant for Java
applications in general in the computer world as they
provide a standardized test suite intended to measure and
test performance of Java Virtual Machines.

Choosing a garbage collection scheme for a language
implementation is a task best accomplished when the
exact dynamic allocation behavior of applications written
in that language is known. As it is not possible to have a
separate garbage collector implementation for each
application, if we aim at best average performance we
should try to find the general allocation pattern of the
applications written in the language for which the garbage
collection is targeted. Instrumentation of memory
allocation behavior like object sizes and lifetimes will
help the implementer choose the appropriate garbage
collection algorithm.

A number of studies have addressed the allocation
behavior problem for several garbage collected languages
like ML, Lisp, Smalltalk as well as for C/C++ as
indicated in [6]. However as the allocation behavior is
expected to be significantly affected by the programming
language the applications are written in, no programming
language independent general behavioral conclusions can
be based on these studies. Therefore separate study of the
allocation behavior is needed for the Java programs.

A first in-depth study of the memory usage in Java
programs has been made by Dieckman and Hölzle [6].
Age, size and type distribution and the overhead of object
alignment have been measured. Time-related
measurements, like object lifetimes, are expressed in
terms of Mbytes allocated. This metric is justified as from
the point of view of garbage collection the amount of
memory allocated directly correlates with the amount of
the work that the memory allocator and the garbage
collector have to execute. Object lifetimes are determined
by repeatedly forcing garbage collection cycles. Thus the
“time” accuracy is limited by the arbitrary intervals at
which garbage collection is forced. Also, the application
should allocate constantly and at about the same rate if we
are to receive precise results on a “real-time” scale.
Allocation of big objects requires special treatment, or
otherwise objects could artificially become old due to an
allocation of a very large object.

Also using the SPECjvm98 benchmarks we studied the
dynamic allocation pattern of Java objects aiming at
providing useful information for garbage collection
implementation decisions. Our study gives an insight
view of time-related aspects of the allocation behavior of
Java programs by using an approach in which direct time
measurements are possible, as opposed to the above

mentioned approach. Time measurements are made on the
real-time scale avoiding accuracy problems imposed by a
two-phase simulation environment. Measurements are
made in just one phase, as the benchmarks execute.

We present age, size and type distribution of the Java
objects. The age distribution can decide whether the
generational hypothesis holds for Java programs and if so
how many generations are best to consider when garbage
collecting. The size measurements can show whether a
compacting algorithm is justified for the case objects
prove to be very heterogeneous in size or a non-
compacting algorithm could perform similar in case most
of the objects are similar sized. The analysis of object
type distribution could show whether it makes sense to
treat some types of objects differently because for
example they occur very often.

In an incremental approach the necessary coordination
of the garbage collection process with the running
program involves the use of either a read or write-barrier.
The present study evaluates the number of read
respectively write-barriers the running program would
encounter if either of the above synchronization schemes
is to be used. The number of read-barriers is obviously
larger that the number of write-barriers (because, as it
will be indicated latter in the paper, anytime a write
barrier is needed a read barrier is also necessary) but
information on the ratio between these two numbers in
practice is quite important as it provide guidance in
choosing the least expensive, from the hardware
implementation point of view, barrier based garbage
collection solution.

Furthermore we counted the number of dead objects a
pure reference counting collector fails to reclaim. This
can show whether an adapted reference counting collector
could be a solution for certain Java applications.

The structure of the remainder as this paper is the
following. Section 2 presents the experimental setup used
for the measurements. Section 3 presents the experimental
results and their interpretation. In section 4 the needed
support for garbage collection in the DJP is suggested and
section 5 presents the conclusions of the study.

2. EXPERIMENTAL SETUP
Because of the large number of API's required to run

significant benchmarks, a complete JVM is required to
fully characterize the effects of garbage collection. The
Delft Java JVM does not currently support the full range
of APIs required for this detailed analysis. As a result, the
Kaffe JVM was chosen for experimental analysis. Kaffe
is a C-written open source JVM distributed under the
GNU Public License. Access to the source code was
necessary in order to implement the experimental
environment and to experiment with different garbage
collection variants. The Kaffe source code has been

233

widely ported to several platforms (i386, Sparc, MIPS)
and operating systems (Linux, Solaris, Windows).

The analysis presented in [6] uses the SPECjvm98
benchmark suite in an experimental setup consisting of
two independent phases. First a tracer in form of an
instrumented version of Sun’s JDK 1.1.5 VM produces a
trace file while executing the benchmark application.
Second, a Java-written simulator reads the trace and
simulates allocation, pointer assignments and garbage
collection while computing statistics on Java objects.
Currently, the simulator forces a full collection after every
50 Kbytes of allocation. The disadvantage is that we can
not know exactly when objects die. We can only know
they died within a certain interval of 50 Kilobytes
allocated.

The approach used in [6] has the disadvantage that
garbage is not reclaimed immediately, at the moment it is
produced. This is also the disadvantage of all tracing
collectors. Instead of being instantly collected, garbage is
reclaimed only subsequently at the moment the garbage
collection cycle occurs. The only type of collector
succeeding in reclaiming garbage objects at the very
moment they become garbage is a reference counting
collector.

Our idea was to exploit this quality of reference
counting collectors by creating a special runtime
environment containing such a collector in order to
instrument Java. Hence, we modified the Kaffe JVM to
include a reference counting garbage collector and ran the
benchmarks on the modified JVM. The advantage of this
approach is that garbage objects are reclaimed
immediately after they become useless. Time related
statistics for such reclaimed objects is therefore as
accurate as possible. Consequently the resolution of the
object lifetime related measurements are improved as
compared to the above-mentioned study.

The reference counting implementation in the Kaffe

JVM aimed at instrumenting the Java language using the
JVMspec98 suite of benchmarks. We also let the original
mark and sweep conservative collector of Kaffe run. It is
this that actually does the garbage collection. The
reference counting collector in turn realize when most of
the objects become inaccessible and collect the

information which is then used for the statistics on the
Java programs.

Possible sources of errors are objects that the reference
counting collector fails to reclaim, as for example garbage
objects in cyclic structures. Our experiments took into
account these objects also, by using besides the reference
counting for accurate lifetime analysis of the Java objects
the original mark and sweep collector of Kaffe. Thus we
were able to see to what extent some of our measurements
have been affected by the above-mentioned drawback. As
shown in Figure 1, the number of objects missed by the
reference counting garbage collector is in general not
important, therefore not significantly influencing the
accuracy of our measurements.

Reference counting collectors in general have the
drawback that they incur a great deal of overhead.
However the overhead is uniformly distributed along the
effective computation time. In our experiment this was
not important because we were interested in relative time
measurements, as for example relative lifetimes of
objects. This relative time related measurements are not
affected by the overhead, as this is uniform distributed
along the execution time of the application.

2.1. THE REFERENCE COUNTING
COLLECTOR
We briefly present next the reference counting garbage

collector implementation used in the experimental
environment. As its name already suggests a reference
counting collector keeps track of the number of references
to every object and when this number drops to zero, it
knows the corresponding object is dead and can be safely
reclaimed.

Two things are mainly required in order to implement a
reference counting collector: a reference counting field
within the Java Objects and a mechanism for updating
reference counters by incrementing, or decrementing the
reference counting field every time a new reference to an
object is created respectively destroyed.

We added the reference counting field in each object
header and modified the interpreter to keep track of each
new reference that appears/disappears and to update the
corresponding reference counting field.

All JVM instructions handling references needed
modifications as they request reference-counting fields
updating. The number of modified instructions in the
JVM used for instrumenting Java programs was 54 out of
a total of 160 instructions opcodes recognized by the Java
interpreter.

A reference counting implementation need to be very
accurate in the sense that it can not afford not to update
the reference count of an object when a new reference
appears or when a reference is destroyed, nor to wrongly

0

5

10

15

20

25

30

35

jav
ac

1

co
m

pr
es

s1
00

ch
ec

k

co
m

pr
es

s1
0

db
1

co
m

pr
es

s1
jes

s1

jes
s1

0
db

10

Benchmarks

Figure 1. Number of objects missed by a reference
counting garbage collector

P
ro

ce
n

ts

234

update a reference counting when it should not. For
correctly updating the reference counters it was necessary
to tell reference from non-reference locations among the
local variables and in the operand stack in each Java
stackframe. Therefore we used a structure parallel to the
stack frames (we will call it stack map) to record the
information related to which locations in the local
variables or operand stack are references and which are
not. This dynamic structure needs updating as the JVM
interprets the bytecode. Local variables need this
bookkeeping because they may hold at different points
during the execution of their function values which are
either references or non-references or at certain moments
undefined if they are for example uninitialized. The
location types in the operand stack also dynamically
change with the program interpreting and thus updating
the stack map is necessary for them too.

We present below as an example the modifications in the
ALOAD JVM instruction. ALOAD is the instruction used
within the JVM to retrieve an object reference from a
local variable and put it on the top of the operand stack.
In this case a new reference to an object appears on the
stack. In order to do reference counting collection the
reference count of the object to which a reference is put
on the stack needs to be incremented. The top of the stack
is also to be marked as containing a reference since this
can be further involved in other reference counting
updates (for example if this location on the stack will be
further stored in another local variable).

The same bookkeeping of a stack map is needed if an
accurate garbage collector is to be implemented. The
collector must be always able to exactly distinguish
references from non-references values. Tracing garbage
collectors determine reachability of objects, i.e., object
liveness, from some set of roots. In Java the Java stack
forms one component of the rootset. The stack map must
be available, describing which locations on the Java stack
contain references.

The reference counting garbage collection
implementation enabled us to collect easily and accurately
information needed for our instrumentation of Java
programs.

For lifetime measurements a time-stamp was stored in
the object headers recording the object creation time.
When the reference counting collector finds an object
dead, in order to find the object's lifetime, it only needs to
subtract from the current time the object creation time,
found in the object's header.

A reference counting collector fails to reclaim garbage
objects in cyclic structures. For these objects we let the
original Kaffe mark and sweep collector run. In order to
know by which of the collectors was an object reclaimed
a field was also added in the object header used as a
collector signature. Thus we were able to do statistics
related to the number of objects possibly missed by a

reference counting collector (already presented in the
introductory section).

A problem to be faced when implementing an
incremental tracing collector is that while the collector is
tracing out the graph of reachable data structures, the
graph may change as the running program may mutate the
graph while the collector "isn't looking" [7]. Incremental
marking traversals must take into account changes to the
reachability graph, made by the mutator during the
collector's traversal. There are two basic approaches to
coordinating the collector with the mutator involving read
or write barriers respectively.

Read barriers are needed in order to assure that the
mutator (or the user program, which is a kind of mutator
for the concurrent garbage collector) always sees the
actualized version of an object in case a garbage collector
is on the run concurrently with the mutator actions.

Write barriers are necessary when the concurrent
collector needs to be assured that it catches all the writes
to objects already traversed by him, in order to possibly
rescan them to find live objects which would otherwise be
falsely declared dead.

A read barrier is needed every time a reference to an
object is accessed, as the pointed object is certainly live
and thus the reference should eventually become updated
to the new version of the object. A write barrier is needed
when a reference to an object is used in order to modify
the referenced object.

Modifications of the Kaffe JVM were also necessary in
order to create the necessary instrumenting run-time
environment for counting the number of read-,
respectively write-barriers a garbage collector would
encounter if an incremental garbage collection approach
using read-, respectively write-barriers is to be taken.

As an example we bellow present the ASTORE JVM
instruction case. The object whose reference is stored in a
local variable by ASTORE, needs to be read-protected in
the incremental read-barriers approach, as in this
approach, when an object is used, i.e., read, it is known to
be live and therefore special action is to be taken. Thus
the number of read-barriers an incremental garbage
collector would encounter in the read-barrier approach
needs to be incremented. Also, the number of write-
barriers an incremental garbage collector would encounter
if it uses the write-barrier approach needs to be
incremented. A write-barrier would be needed here
because the interpreter writes in a zone, the local
variables, which might have been already scanned for
pointers, and in the write-barrier incremental approach
special action is to be taken in such a situation.

3. EXPERIMENTAL RESULTS

235

Using the modified Kaffe JVM and the jvmSPEC98 set
of benchmarks, representative for Java programs, we
studied the following Java objects related features.

3.1 AGE DISTRIBUTION

In order to have a general view over the object liveness
feature of all the tested benchmarks we expressed object
lifetimes as percents representing their absolute lifetime
reported to the absolute lifetime of the oldest object in the
benchmark. This means that for example an object whose
lifetime was 50% has lived half the life of the oldest
object in the same benchmark experiment. The number of
objects having a certain lifetime was also expressed in
percents out of the total number of objects created by the
respective benchmark.

The general observed pattern in all the benchmarks is
that the majority of objects die very small aged. Figure 2
depicts the number of objects not surviving above a
certain age in the javac benchmark. For a better
observation Figure 2 focuses on very small ages. As
shown in the distribution of the objects according to their

lifetime for the javac benchmark, more than 90% of the
objects are not surviving above the age of 0.1%. Beside
the ephemeral 90% objects (the young generation), the
remaining 10% of the objects uniformly cover ages from
0.1% to 100% (the old generation). We have only these
two generations as no further clear distinction among the
old generation can be made.

All the tested benchmarks presented similar results. In
the jess benchmark approximately 80% of the objects die
at ages of under 20%. The results of the db benchmark
show that more than 40% of objects die at ages under
0.1%.

3.2 SIZE DISTRIBUTION

We also used relative measure for object sizes in order
to compare the results obtained with different
benchmarks. The size is measured as percents from the
size of the biggest allocated object in the benchmark.

A common tendency to the benchmarks is that the vast
majority of objects have very small sizes compared to a
very small fraction of big objects.

The size histogram for the javac benchmark program is
depicted in Figure 3. As indicated in the chart more than
90% of the objects have sizes under 0.4%.

Discontinuities in the graph depicted in Figure 3 are to
be interpreted as separations of objects in classes
according to their sizes. The plateaus we can observe in
the graph represent the classes of objects according to
their size. The representative of each class can be
considered the object size corresponding to the beginning
of each plateau. Objects in an object size class are as size

homogeneous as flat as the corresponding plateau is.

With the above “key” we can interpret the Figure 3 as
indicating mainly seven size classes of objects in the
javac benchmark occupying sizes between 0 and 0.4%.
However, as the stairs are not perfectly horizontal, there
are still size differences within a size class, as important
as steep the stair is. Anyway there is no predominant
object size among the objects.

The size histogram for the jess benchmark program
suggests that more than 80% of the objects are very small
sized. 90% of the objects have sizes under 1.4%. The
similarly identified number of size classes is this time
nine, but again there is no predominant size among the
small sized objects.

The size distribution for the db benchmark program
showed that almost all the objects are very small sized,
having sizes of under 0.1%.

According to the presented results the number of object
size classes is not very important. The size pattern of
objects significantly depends of applications. This means
that, even if a non-compacting collector will avoid
fragmentation if it happens to allocate objects belonging
to the same object size class together, compactness can
not be guaranteed if a non-compacting garbage collector
is used. However, possible techniques are conceivable in
which objects of same dynamically determined size class
are allocated together alleviating thus fragmentation.

0

20

40

60

80

100

120

0 0,1 0,2 0,3 0,4 0,5

Size (procents out of the biggest object)

Figure 3. Size histogram (magnifying glass)

N
u

m
b

er
 o

f
o

b
je

ct
s

h
av

in
g

 t
h

is
 s

iz
e

o
r

le
ss

(i

n
 p

ro
ce

n
ts

 o
u

t
o

f
th

e
to

ta
l n

u
m

b
er

 o
f

o
b

je
ct

s)

0

10

20

30

40

50

60

70

80

90

100

0 0,02 0,04 0,06 0,08 0,1

Age (procents out of the oldest object's age)

Figure 2. Age histogram (magnifying glass)
benchmark = javac

N
u

m
b

er
 o

f
o

b
je

ct
s

d
yi

n
g

 u
n

d
er

 t
h

is
 a

g
e

(p
ro

ce
n

ts
 o

u
t

o
f

th
e

to
ta

l n
u

m
b

er
 o

f
o

b
je

ct
s)

236

3.3 TYPE DISTRIBUTION

A JVM dispose over four instructions for allocating Java
objects: NEW for creating “normal” Java objects
(objects), NEWARRAY for creating an array of numbers
or Booleans (arrays), ANEWARRAY to allocate an array
of objects (refarrays), MULTIANEARRAY to allocate a
multi-dimensional array (multiarrays)

Accordingly, we measured the type repartition for the
tested benchmarks. The results are presented in Figure 4.

We can observe that most Java objects are normal
objects and arrays. Together they represent approximately
90% of all allocated objects.

We also studied the repartition of objects according to
their Java classes. Object classes in the javac benchmark
are depicted in Figure 5. Similar results were also
obtained with the other benchmarks. As a general feature
relatively many objects have the class java/lang/String.
For some benchmarks relatively many objects have the

class java/lang/Integer. Most of the objects have user-
defined classes.

In the case of the javac benchmark these were 72% of
all the objects. The number of objects having System
classes (predefined in the Java language, as opposed to
the user-defined classes) summed thus approximately
28% of the total number of objects. String object were
14%, StringBuffer 5% and so forth as one can see in
Figure 4.

In the jess benchmark 70% of the objects have user-
defined classes. Among the System class objects the most
frequent are Integer objects with 19% and String and
String Buffer having together 9%.

The results suggest that there are objects appearing
relatively often. The type of the objects appearing
frequent is application dependent. However, as these
results show, String objects are in general relatively
frequent. It would make thus sense that they are therefore
considered apart from other objects.

3.4 NUMBER OF WRITE OR READ
BARRIERS

In the case of the Java programs the found proportion of
read respectively write barriers possibly needed was of
65%, respectively 35%. The absolute numbers for javac
benchmark was around 45 million barriers that the
interpreting of the program would encounter in the read
approach as compared with about 25 million write
barriers which would be needed for the same program in
the write-barrier approach.

Both approaches are expensive in terms of time
consumed for the barriers if applied on conventional
hardware. Read-barriers are even more expensive since
pointer reads are much more often as our results also
suggest. The choice of a read or write barrier scheme is
likely to be made on the basis of the available hardware
[7].

4. INTERPRETING THE RESULTS
The experiments presented above also gave us the

opportunity to identify some critical garbage collection
tasks. With corresponding hardware support their
execution is likely to significantly improve. We present
bellow some of our observations and the suggestions for
the DJP.

Maintaining the stack map, needed for the reference
counting collection but also for accurate garbage
collection implementations introduces both performance
and complexity overhead as each time a reference
appears/disappears on/from the stack, the stack map must
be updated.

The overhead of maintaining the stack map could be
drastically reduced if it would be hardware supported by
the automatically updating of the stack map structure.

Our study of the allocation behavior showed that Java
could take advantage of a generational garbage collection
approach. But in order to fully take advantage of the
generational approach write barriers are needed, as we
must trap all the pointer writes in order to take special
action in case an old-to-young intergenerational pointer is
created. Moreover write barriers are also inevitable for an
incremental garbage collection approach. The overhead
introduced by soft write-barriers could be significantly
diminished if write barriers are in part/totally
implemented in hardware.

0

10

20

30

40

50

60

70

ch
ec

k

co
m

pr
es

s1

co
m

pr
es

s1
0

co
m

pr
es

s1
00

jes
s1

jes
s1

0
db

1
db

10

jav
ac

1

jav
ac

10

Benchmark

Figure 4. Type of Java objects

P
ro

ce
n

ts Objects

Arrays

Refarrays

Multiarrays

Objects' classes
javac

0
10
20
30
40
50
60
70
80

Use
r d

ef
ine

d
cla

ss
es

jav
a/

lan
g/

Stri
ng

jav
a/

lan
g/

Stri
ng

Buf
fe

r

jav
a/

lan
g/

Cha
ra

cte
r$

C...

jav
a/

lan
g/

In
te

ge
r

jav
a/

ut
il/V

ec
to

r

jav
a/

io/
Byte

Arra
yO

ut
pu

...

jav
a/

ut
il/H

as
ht

ab
le

ot
he

r s
ys

te
m

 ty
pe

s

Figure 5. Object classes (javac benchmark)

N
u

m
b

er
 o

f
o

b
je

ct
s

(i
n

 p
ro

ce
n

ts

o
u

t
o

f
th

e
to

ta
l n

u
m

b
er

 o
f

o
b

je
ct

s)

237

The Java dynamic allocation behavior study suggested
that in general a reference counting collector only fails to
reclaim a relatively small data percent. One of the
advantages of reference counting garbage collection is
that memory management overheads are distributed
throughout the computation [9]. The DJP could use a
reference counting collection scheme, in order to provide
smooth response time and have a second tracing collector
run from time to time in order to reclaim the garbage that
the reference counting collector fails to reclaim. If the
amount of garbage to be reclaimed by the tracing
collector is not important this scheme provide smooth
overall response-time. A reference counting collector
basically needs the maintaining of the same stack map
necessary for accurate tracing collector implementations.
Beside marking/unmarking the corresponding bit in the
stack map when a reference appears/disappears in the
stack, the hardware support should then also
increment/decrement the corresponding reference
counting field, and take the needed reclaiming action in
case the reference counting drops to zero.

5. CONCLUSIONS

We considered a number of issues associated with
garbage collection in Java in general, and in the Delft
Java Processor in particular. Our overall investigations
and achievements can be summarized by the following.

We studied the dynamic allocation pattern of Java
objects, based on a set of standardized benchmarks. The
results confirmed the generational hypothesis, according
to which most objects die very young. This suggested that
a generational collection approach for Java is worth. The
age distribution of Java objects suggested that the number
of generations required is not greater than two, since there
are mainly only two clearly separated generations. The
size analysis revealed no specific size pattern for the Java
object in general. However only a small fraction of the
objects is much more big-sized than the vast majority of
the others. We suggest a possible improvement to the
simple generational garbage collection by trying to
identify this few large objects in order to avoid to copy
them repeatedly if a copy collector is used. The type
analysis suggested that String objects could be treated
specially as they are expected to appear quite often in
Java programs.

An accurate collector implementation for Java requires
that at the moments a garbage collection cycle can occur a
stack map is available in order to tell the collector which
locations on the Java stack are pointers. The maintaining
of a stack map structure incurs much overhead in the
interpreting JVM. Therefore a significant time-
performance improvement is to be expected if this could
be partially/totally hardware implemented.

A generational garbage collector for Java can take
advantage of the Java objects tendency to die relatively

very young. However in order to take fully advantage of
the generational hypothesis which confirms in Java,
write-barriers necessary for generational collections need
to be efficiently implemented. Much performance
improvement is therefore also to be expected if they could
be hardware supported.

REFERENCES

[1] Sun Microelectornics. PicoJava Microprocessor Core
Architecture. Technical Report WPR-0015-01, Sun
Microsystems, Mountain View, California, November
1996. Available from
http://www.sun.com/sparc/whitepapers/wpr-0015-01

[2] http://java.sun.com/products/hotspot/whitepaper.html

[3] John Glossner and Stamatis Vassiliadis, The Delft
Java Engine: An Introduction, Third International Euro-
Par Conference (Euro-Par ’97) Parallel Processing,
Lecture Notes In Computer Science, pages 766-770,
Passau, Germany, August 1997, Springer-Verlag

[4] John Glossner, DELFT-JAVA, a multi-threaded Java
Accelerator. Ph.D. Dissertation draft

[5] http://www.spec.org/osg/jvm98/

[6] Sylvia Dieckman and Urs Hölzle, A Study of the
Allocation Behaviour of the SPECjvm98 Java
Benchmarks, ECOOP’99, the 13th European Conference
on Object-Oriented Programming, Lisbon, Portugal, June
1999

[7] Paul Wilson, Uniprocessor Garbage Collection
techniques, 1996

[8] Ole Agesen and David Detlefs, Finding References
in Java Stacks, OOPSLA’97 Workshop on Garbage
Collection and Memory Management, pages 766-770,

[9] Richard Jones and Rafael Lins, Garbage Collection,
Algorithms for Automatic Dynamic Memory
Management, JOHN WILEY & SONS, NY 10158-0012,
USA, 1996

238

