
 

ABSTRACT. The Delft Java Processor (DJP) is a 
hardware approach aiming at accelerating bytecode 
execution. One of the critical tasks in a JVM that could 
benefit from hardware support is garbage collection. To 
efficiently perform garbage collection in the DJP we have 
to better understand the general garbage collection related 
issues in real life situations. In this respect we provide in 
this paper a study of the dynamic allocation behavior of 
Java programs based on the SPECjvm98 benchmark suite. 
Age, size and type distribution of Java objects are 
presented and interpreted from the general point of view 
of garbage collection, together with other garbage 
collection related measurements. Thus we can identify the 
features of an efficient DJP dedicated garbage collector 
and propose supporting architectural extension(s) in the 
DJP. The study confirms the weak generational 
hypothesis according to which objects are most likely to 
die very young, suggesting that a collector with two 
generations could improve garbage collection 
performance with corresponding hardware support. To 
fully take advantage of the generational hypothesis 
efficient hardware-implemented write barriers are needed. 
Hardware support is also recommended for describing the 
dynamic layout of the stack (stack pointer map) for 
accurate garbage collection. 
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1. INTRODUCTION 

One of the main drawbacks of Java, and of languages 
based on virtual machines in general, is that program 
execution can not be as fast as the equivalent solution in a 
fully compiled language, as the execution process is 
interpretation based. In this direct interpretation approach 
a software program emulates the Java Virtual Machine 
(JVM). To improve performance and yet maintain the 
flexibility, a number of Java execution alternative 
techniques have been proposed. Just-in-time compilers, 
off-line compilers, native compilers are among them. 
Sun's picoJava implementation [1] for example directly 
executes the JVM Instruction Set and also provides 
support for garbage collection, instruction optimization, 
method invocation and synchronization. New 
technologies for improving Java programs performances 

covering the compiling process, garbage collection and 
synchronization, have recently been proposed in Sun’s 
Hotspot JVM [2]. 

Another approach to hardware acceleration is dynamic 
instruction translation. To the best of our knowledge, the 
Delft-Java Processor [3] is the only processor to 
incorporate this feature. 

In hardware assisted dynamic translation, Java Virtual 
Machine instructions are translated on the fly into the 
Delft-Java instruction set. The hardware requirements to 
perform this translation are not excessive when support 
for Java language constructs are incorporated into the 
processor's Instruction Set Architecture (ISA). The Java 
language provides processor architects with opportunities 
for exploiting Instruction Level Parallelism (ILP). Rather 
than requiring the processor to extract all ILP from a 
single executing thread, the Java language intrinsically 
supports programmer specification of parallelism through 
threads. In the Delft-Java architecture the goal is to 
extract maximal parallelism as defined by the Java 
language without burdening the programmer to specify 
any additional parallelism that is not inherent in the 
language constructs. At the highest level a programmer 
views the DJP as a Java Virtual Machine. In the Delft-
Java approach, Java Virtual Machine execution is enabled 
by translating Java Virtual Machine bytecode into the 
Delft-Java RISC-based architecture. Special ISA support 
is provided for more complex Java Virtual Machine 
instructions. In addition to JVM execution, the Delft-Java 
architecture provides general support for C compilers and 
other operations that are required in general purpose 
processors. Architectural support for Multimedia SIMD 
and Digital Signal Processing (DSP) is also incorporated 
into the architecture. 

The intended capabilities of the Delft-Java processor 
also include architectural support for synchronization for 
multithreaded organizations, garbage collection, array 
bounds checking, and vector operations [4]. 

Hardware support for the garbage collection is very 
important for the performance of the DJP when used as a 
JVM. In this work we analyze the general features of 
dynamic memory allocation of Java programs aiming at 
finding the appropriate garbage collection scheme in a 
JVM. Establishing a general pattern of dynamic memory 
allocation for Java programs is important, as a garbage 
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collector can be best tailored when this pattern is known. 
Based on the observations made, actions the DJP could 
take to support garbage collection are suggested. 
Programs from the SPECjvm98 benchmark suite released 
by the System Performance Evaluation Corporation [5] 
are used as relevant, real-world Java programs for our 
study. These benchmarks are considered relevant for Java 
applications in general in the computer world as they 
provide a standardized test suite intended to measure and 
test performance of Java Virtual Machines. 

Choosing a garbage collection scheme for a language 
implementation is a task best accomplished when the 
exact dynamic allocation behavior of applications written 
in that language is known. As it is not possible to have a 
separate garbage collector implementation for each 
application, if we aim at best average performance we 
should try to find the general allocation pattern of the 
applications written in the language for which the garbage 
collection is targeted. Instrumentation of memory 
allocation behavior like object sizes and lifetimes will 
help the implementer choose the appropriate garbage 
collection algorithm. 

A number of studies have addressed the allocation 
behavior problem for several garbage collected languages 
like ML, Lisp, Smalltalk as well as for C/C++ as 
indicated in [6]. However as the allocation behavior is 
expected to be significantly affected by the programming 
language the applications are written in, no programming 
language independent general behavioral conclusions can 
be based on these studies. Therefore separate study of the 
allocation behavior is needed for the Java programs. 

A first in-depth study of the memory usage in Java 
programs has been made by Dieckman and Hölzle [6]. 
Age, size and type distribution and the overhead of object 
alignment have been measured. Time-related 
measurements, like object lifetimes, are expressed in 
terms of Mbytes allocated. This metric is justified as from 
the point of view of garbage collection the amount of 
memory allocated directly correlates with the amount of 
the work that the memory allocator and the garbage 
collector have to execute. Object lifetimes are determined 
by repeatedly forcing garbage collection cycles. Thus the 
“time” accuracy is limited by the arbitrary intervals at 
which garbage collection is forced. Also, the application 
should allocate constantly and at about the same rate if we 
are to receive precise results on a “real-time” scale. 
Allocation of big objects requires special treatment, or 
otherwise objects could artificially become old due to an 
allocation of a very large object. 

Also using the SPECjvm98 benchmarks we studied the 
dynamic allocation pattern of Java objects aiming at 
providing useful information for garbage collection 
implementation decisions. Our study gives an insight 
view of time-related aspects of the allocation behavior of 
Java programs by using an approach in which direct time 
measurements are possible, as opposed to the above 

mentioned approach. Time measurements are made on the 
real-time scale avoiding accuracy problems imposed by a 
two-phase simulation environment. Measurements are 
made in just one phase, as the benchmarks execute. 

We present age, size and type distribution of the Java 
objects. The age distribution can decide whether the 
generational hypothesis holds for Java programs and if so 
how many generations are best to consider when garbage 
collecting. The size measurements can show whether a 
compacting algorithm is justified for the case objects 
prove to be very heterogeneous in size or a non-
compacting algorithm could perform similar in case most 
of the objects are similar sized. The analysis of object 
type distribution could show whether it makes sense to 
treat some types of objects differently because for 
example they occur very often. 

In an incremental approach the necessary coordination 
of the garbage collection process with the running 
program involves the use of either a read or write-barrier. 
The present study evaluates the number of read 
respectively write-barriers the running program would 
encounter if either of the above synchronization schemes 
is to be used. The number of read-barriers is obviously 
larger that the number of write-barriers  (because, as it 
will be indicated latter in the paper, anytime a write 
barrier is needed a read barrier is also necessary) but 
information on the ratio between these two numbers in 
practice is quite important as it provide guidance in 
choosing the least expensive, from the hardware 
implementation point of view, barrier based garbage 
collection solution.   

Furthermore we counted the number of dead objects a 
pure reference counting collector fails to reclaim. This 
can show whether an adapted reference counting collector 
could be a solution for certain Java applications. 

The structure of the remainder as this paper is the 
following. Section 2 presents the experimental setup used 
for the measurements. Section 3 presents the experimental 
results and their interpretation. In section 4 the needed 
support for garbage collection in the DJP is suggested and 
section 5 presents the conclusions of the study. 

 

2. EXPERIMENTAL SETUP 
Because of the large number of API's required to run 

significant benchmarks, a complete JVM is required to 
fully characterize the effects of garbage collection. The 
Delft Java JVM does not currently support the full range 
of APIs required for this detailed analysis. As a result, the 
Kaffe JVM was chosen for experimental analysis. Kaffe 
is a C-written open source JVM distributed under the 
GNU Public License. Access to the source code was 
necessary in order to implement the experimental 
environment and to experiment with different garbage 
collection variants. The Kaffe source code has been 
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widely ported to several platforms (i386, Sparc, MIPS) 
and operating systems (Linux, Solaris, Windows). 

The analysis presented in [6] uses the SPECjvm98 
benchmark suite in an experimental setup consisting of 
two independent phases. First a tracer in form of an 
instrumented version of Sun’s JDK 1.1.5 VM produces a 
trace file while executing the benchmark application. 
Second, a Java-written simulator reads the trace and 
simulates allocation, pointer assignments and garbage 
collection while computing statistics on Java objects. 
Currently, the simulator forces a full collection after every 
50 Kbytes of allocation. The disadvantage is that we can 
not know exactly when objects die. We can only know 
they died within a certain interval of 50 Kilobytes 
allocated. 

The approach used in [6] has the disadvantage that 
garbage is not reclaimed immediately, at the moment it is 
produced. This is also the disadvantage of all tracing 
collectors. Instead of being instantly collected, garbage is 
reclaimed only subsequently at the moment the garbage 
collection cycle occurs. The only type of collector 
succeeding in reclaiming garbage objects at the very 
moment they become garbage is a reference counting 
collector. 

Our idea was to exploit this quality of reference 
counting collectors by creating a special runtime 
environment containing such a collector in order to 
instrument Java. Hence, we modified the Kaffe JVM to 
include a reference counting garbage collector and ran the 
benchmarks on the modified JVM. The advantage of this 
approach is that garbage objects are reclaimed 
immediately after they become useless. Time related 
statistics for such reclaimed objects is therefore as 
accurate as possible. Consequently the resolution of the 
object lifetime related measurements are improved as 
compared to the above-mentioned study. 

The reference counting implementation in the Kaffe 

JVM aimed at instrumenting the Java language using the 
JVMspec98 suite of benchmarks. We also let the original 
mark and sweep conservative collector of Kaffe run. It is 
this that actually does the garbage collection. The 
reference counting collector in turn realize when most of 
the objects become inaccessible and collect the 

information which is then used for the statistics on the 
Java programs. 

Possible sources of errors are objects that the reference 
counting collector fails to reclaim, as for example garbage 
objects in cyclic structures. Our experiments took into 
account these objects also, by using besides the reference 
counting for accurate lifetime analysis of the Java objects 
the original mark and sweep collector of Kaffe. Thus we 
were able to see to what extent some of our measurements 
have been affected by the above-mentioned drawback. As 
shown in Figure 1, the number of objects missed by the 
reference counting garbage collector is in general not 
important, therefore not significantly influencing the 
accuracy of our measurements. 

Reference counting collectors in general have the 
drawback that they incur a great deal of overhead. 
However the overhead is uniformly distributed along the 
effective computation time. In our experiment this was 
not important because we were interested in relative time 
measurements, as for example relative lifetimes of 
objects. This relative time related measurements are not 
affected by the overhead, as this is uniform distributed 
along the execution time of the application. 

 

2.1. THE REFERENCE COUNTING 
COLLECTOR 
We briefly present next the reference counting garbage 

collector implementation used in the experimental 
environment. As its name already suggests a reference 
counting collector keeps track of the number of references 
to every object and when this number drops to zero, it 
knows the corresponding object is dead and can be safely 
reclaimed. 

Two things are mainly required in order to implement a 
reference counting collector: a reference counting field 
within the Java Objects and a mechanism for updating 
reference counters by incrementing, or decrementing the 
reference counting field every time a new reference to an 
object is created respectively destroyed. 

We added the reference counting field in each object 
header and modified the interpreter to keep track of each 
new reference that appears/disappears and to update the 
corresponding reference counting field. 

All JVM instructions handling references needed 
modifications as they request reference-counting fields 
updating. The number of modified instructions in the 
JVM used for instrumenting Java programs was 54 out of 
a total of 160 instructions opcodes recognized by the Java 
interpreter. 

A reference counting implementation need to be very 
accurate in the sense that it can not afford not to update 
the reference count of an object when a new reference 
appears or when a reference is destroyed, nor to wrongly 
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update a reference counting when it should not. For 
correctly updating the reference counters it was necessary 
to tell reference from non-reference locations among the 
local variables and in the operand stack in each Java 
stackframe. Therefore we used a structure parallel to the 
stack frames (we will call it stack map) to record the 
information related to which locations in the local 
variables or operand stack are references and which are 
not. This dynamic structure needs updating as the JVM 
interprets the bytecode. Local variables need this 
bookkeeping because they may hold at different points 
during the execution of their function values which are 
either references or non-references or at certain moments 
undefined if they are for example uninitialized. The 
location types in the operand stack also dynamically 
change with the program interpreting and thus updating 
the stack map is necessary for them too. 

We present below as an example the modifications in the 
ALOAD JVM instruction. ALOAD is the instruction used 
within the JVM to retrieve an object reference from a 
local variable and put it on the top of the operand stack. 
In this case a new reference to an object appears on the 
stack. In order to do reference counting collection the 
reference count of the object to which a reference is put 
on the stack needs to be incremented. The top of the stack 
is also to be marked as containing a reference since this 
can be further involved in other reference counting 
updates (for example if this location on the stack will be 
further stored in another local variable). 

The same bookkeeping of a stack map is needed if an 
accurate garbage collector is to be implemented. The 
collector must be always able to exactly distinguish 
references from non-references values. Tracing garbage 
collectors determine reachability of objects, i.e., object 
liveness, from some set of roots. In Java the Java stack 
forms one component of the rootset. The stack map must 
be available, describing which locations on the Java stack 
contain references. 

The reference counting garbage collection 
implementation enabled us to collect easily and accurately 
information needed for our instrumentation of Java 
programs. 

For lifetime measurements a time-stamp was stored in 
the object headers recording the object creation time. 
When the reference counting collector finds an object 
dead, in order to find the object's lifetime, it only needs to 
subtract from the current time the object creation time, 
found in the object's header. 

A reference counting collector fails to reclaim garbage 
objects in cyclic structures. For these objects we let the 
original Kaffe mark and sweep collector run. In order to 
know by which of the collectors was an object reclaimed 
a field was also added in the object header used as a 
collector signature. Thus we were able to do statistics 
related to the number of objects possibly missed by a 

reference counting collector (already presented in the 
introductory section). 

A problem to be faced when implementing an 
incremental tracing collector is that while the collector is 
tracing out the graph of reachable data structures, the 
graph may change as the running program may mutate the 
graph while the collector "isn't looking" [7]. Incremental 
marking traversals must take into account changes to the 
reachability graph, made by the mutator during the 
collector's traversal. There are two basic approaches to 
coordinating the collector with the mutator involving read 
or write barriers respectively. 

Read barriers are needed in order to assure that the 
mutator (or the user program, which is a kind of mutator 
for the concurrent garbage collector) always sees the 
actualized version of an object in case a garbage collector 
is on the run concurrently with the mutator actions.  

Write barriers are necessary when the concurrent 
collector needs to be assured that it catches all the writes 
to objects already traversed by him, in order to possibly 
rescan them to find live objects which would otherwise be 
falsely declared dead. 

A read barrier is needed every time a reference to an 
object is accessed, as the pointed object is certainly live 
and thus the reference should eventually become updated 
to the new version of the object. A write barrier is needed 
when a reference to an object is used in order to modify 
the referenced object. 

Modifications of the Kaffe JVM were also necessary in 
order to create the necessary instrumenting run-time 
environment for counting the number of read-, 
respectively write-barriers a garbage collector would 
encounter if an incremental garbage collection approach 
using read-, respectively write-barriers is to be taken. 

As an example we bellow present the ASTORE JVM 
instruction case. The object whose reference is stored in a 
local variable by ASTORE, needs to be read-protected in 
the incremental read-barriers approach, as in this 
approach, when an object is used, i.e., read, it is known to 
be live and therefore special action is to be taken. Thus 
the number of read-barriers an incremental garbage 
collector would encounter in the read-barrier approach 
needs to be incremented. Also, the number of write-
barriers an incremental garbage collector would encounter 
if it uses the write-barrier approach needs to be 
incremented. A write-barrier would be needed here 
because the interpreter writes in a zone, the local 
variables, which might have been already scanned for 
pointers, and in the write-barrier incremental approach 
special action is to be taken in such a situation. 

 

3. EXPERIMENTAL RESULTS 
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Using the modified Kaffe JVM and the jvmSPEC98 set 
of benchmarks, representative for Java programs, we 
studied the following Java objects related features. 

 

3.1 AGE DISTRIBUTION 

In order to have a general view over the object liveness 
feature of all the tested benchmarks we expressed object 
lifetimes as percents representing their absolute lifetime 
reported to the absolute lifetime of the oldest object in the 
benchmark. This means that for example an object whose 
lifetime was 50% has lived half the life of the oldest 
object in the same benchmark experiment. The number of 
objects having a certain lifetime was also expressed in 
percents out of the total number of objects created by the 
respective benchmark. 

The general observed pattern in all the benchmarks is 
that the majority of objects die very small aged. Figure 2 
depicts the number of objects not surviving above a 
certain age in the javac benchmark. For a better 
observation Figure 2 focuses on very small ages. As 
shown in the distribution of the objects according to their 

lifetime for the javac benchmark, more than 90% of the 
objects are not surviving above the age of 0.1%. Beside 
the ephemeral 90% objects (the young generation), the 
remaining 10% of the objects uniformly cover ages from 
0.1% to 100% (the old generation). We have only these 
two generations as no further clear distinction among the 
old generation can be made. 

All the tested benchmarks presented similar results. In 
the jess benchmark approximately 80% of the objects die 
at ages of under 20%. The results of the db benchmark 
show that more than 40% of objects die at ages under 
0.1%. 

3.2 SIZE DISTRIBUTION 

We also used relative measure for object sizes in order 
to compare the results obtained with different 
benchmarks. The size is measured as percents from the 
size of the biggest allocated object in the benchmark. 

A common tendency to the benchmarks is that the vast 
majority of objects have very small sizes compared to a 
very small fraction of big objects. 

The size histogram for the javac benchmark program is 
depicted in Figure 3. As indicated in the chart more than 
90% of the objects have sizes under 0.4%. 

Discontinuities in the graph depicted in Figure 3 are to 
be interpreted as separations of objects in classes 
according to their sizes. The plateaus we can observe in 
the graph represent the classes of objects according to 
their size. The representative of each class can be 
considered the object size corresponding to the beginning 
of each plateau. Objects in an object size class are as size 

homogeneous as flat as the corresponding plateau is. 

With the above “key” we can interpret the Figure 3 as 
indicating mainly seven size classes of objects in the 
javac benchmark occupying sizes between 0 and 0.4%. 
However, as the stairs are not perfectly horizontal, there 
are still size differences within a size class, as important 
as steep the stair is. Anyway there is no predominant 
object size among the objects. 

The size histogram for the jess benchmark program 
suggests that more than 80% of the objects are very small 
sized. 90% of the objects have sizes under 1.4%. The 
similarly identified number of size classes is this time 
nine, but again there is no predominant size among the 
small sized objects. 

The size distribution for the db benchmark program 
showed that almost all the objects are very small sized, 
having sizes of under 0.1%. 

According to the presented results the number of object 
size classes is not very important. The size pattern of 
objects significantly depends of applications. This means 
that, even if a non-compacting collector will avoid 
fragmentation if it happens to allocate objects belonging 
to the same object size class together, compactness can 
not be guaranteed if a non-compacting garbage collector 
is used. However, possible techniques are conceivable in 
which objects of same dynamically determined size class 
are allocated together alleviating thus fragmentation. 
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3.3 TYPE DISTRIBUTION 

A JVM dispose over four instructions for allocating Java 
objects: NEW for creating “normal” Java objects 
(objects), NEWARRAY for creating an array of numbers 
or Booleans (arrays), ANEWARRAY to allocate an array 
of objects (refarrays), MULTIANEARRAY to allocate a 
multi-dimensional array (multiarrays) 

Accordingly, we measured the type repartition for the 
tested benchmarks. The results are presented in Figure 4. 

We can observe that most Java objects are normal 
objects and arrays. Together they represent approximately 
90% of all allocated objects. 

We also studied the repartition of objects according to 
their Java classes. Object classes in the javac benchmark 
are depicted in Figure 5. Similar results were also 
obtained with the other benchmarks. As a general feature 
relatively many objects have the class java/lang/String. 
For some benchmarks relatively many objects have the 

class java/lang/Integer. Most of the objects have user-
defined classes. 

In the case of the javac benchmark these were 72% of 
all the objects. The number of objects having System 
classes (predefined in the Java language, as opposed to 
the user-defined classes) summed thus approximately 
28% of the total number of objects. String object were 
14%, StringBuffer 5% and so forth as one can see in 
Figure 4. 

In the jess benchmark 70% of the objects have user-
defined classes. Among the System class objects the most 
frequent are Integer objects with 19% and String and 
String Buffer having together 9%. 

The results suggest that there are objects appearing 
relatively often. The type of the objects appearing 
frequent is application dependent. However, as these 
results show, String objects are in general relatively 
frequent. It would make thus sense that they are therefore 
considered apart from other objects. 

 

3.4 NUMBER OF WRITE OR READ 
BARRIERS 

In the case of the Java programs the found proportion of 
read respectively write barriers possibly needed was of 
65%, respectively 35%. The absolute numbers for javac 
benchmark was around 45 million barriers that the 
interpreting of the program would encounter in the read 
approach as compared with about 25 million write 
barriers which would be needed for the same program in 
the write-barrier approach. 

Both approaches are expensive in terms of time 
consumed for the barriers if applied on conventional 
hardware. Read-barriers are even more expensive since 
pointer reads are much more often as our results also 
suggest. The choice of a read or write barrier scheme is 
likely to be made on the basis of the available hardware 
[7]. 

 

4. INTERPRETING THE RESULTS 
The experiments presented above also gave us the 

opportunity to identify some critical garbage collection 
tasks. With corresponding hardware support their 
execution is likely to significantly improve. We present 
bellow some of our observations and the suggestions for 
the DJP. 

Maintaining the stack map, needed for the reference 
counting collection but also for accurate garbage 
collection implementations introduces both performance 
and complexity overhead as each time a reference 
appears/disappears on/from the stack, the stack map must 
be updated. 

The overhead of maintaining the stack map could be 
drastically reduced if it would be hardware supported by 
the automatically updating of the stack map structure. 

Our study of the allocation behavior showed that Java 
could take advantage of a generational garbage collection 
approach. But in order to fully take advantage of the 
generational approach write barriers are needed, as we 
must trap all the pointer writes in order to take special 
action in case an old-to-young intergenerational pointer is 
created. Moreover write barriers are also inevitable for an 
incremental garbage collection approach. The overhead 
introduced by soft write-barriers could be significantly 
diminished if write barriers are in part/totally 
implemented in hardware. 
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The Java dynamic allocation behavior study suggested 
that in general a reference counting collector only fails to 
reclaim a relatively small data percent. One of the 
advantages of reference counting garbage collection is 
that memory management overheads are distributed 
throughout the computation [9]. The DJP could use a 
reference counting collection scheme, in order to provide 
smooth response time and have a second tracing collector 
run from time to time in order to reclaim the garbage that 
the reference counting collector fails to reclaim. If the 
amount of garbage to be reclaimed by the tracing 
collector is not important this scheme provide smooth 
overall response-time. A reference counting collector 
basically needs the maintaining of the same stack map 
necessary for accurate tracing collector implementations. 
Beside marking/unmarking the corresponding bit in the 
stack map when a reference appears/disappears in the 
stack, the hardware support should then also 
increment/decrement the corresponding reference 
counting field, and take the needed reclaiming action in 
case the reference counting drops to zero. 

 

5. CONCLUSIONS 

We considered a number of issues associated with 
garbage collection in Java in general, and in the Delft 
Java Processor in particular. Our overall investigations 
and achievements can be summarized by the following. 

We studied the dynamic allocation pattern of Java 
objects, based on a set of standardized benchmarks. The 
results confirmed the generational hypothesis, according 
to which most objects die very young. This suggested that 
a generational collection approach for Java is worth. The 
age distribution of Java objects suggested that the number 
of generations required is not greater than two, since there 
are mainly only two clearly separated generations. The 
size analysis revealed no specific size pattern for the Java 
object in general. However only a small fraction of the 
objects is much more big-sized than the vast majority of 
the others. We suggest a possible improvement to the 
simple generational garbage collection by trying to 
identify this few large objects in order to avoid to copy 
them repeatedly if a copy collector is used. The type 
analysis suggested that String objects could be treated 
specially as they are expected to appear quite often in 
Java programs. 

An accurate collector implementation for Java requires 
that at the moments a garbage collection cycle can occur a 
stack map is available in order to tell the collector which 
locations on the Java stack are pointers. The maintaining 
of a stack map structure incurs much overhead in the 
interpreting JVM. Therefore a significant time-
performance improvement is to be expected if this could 
be partially/totally hardware implemented. 

A generational garbage collector for Java can take 
advantage of the Java objects tendency to die relatively 

very young. However in order to take fully advantage of 
the generational hypothesis which confirms in Java, 
write-barriers necessary for generational collections need 
to be efficiently implemented. Much performance 
improvement is therefore also to be expected if they could 
be hardware supported. 
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