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 ABSTRACT 

The Sandblaster architecture is a high-performance vector 
architecture targeted at digital signal processing 
applications. The Sandblaster 1.0 architecture was 
targeted at implementing the physical layer of 3G wireless 
standards, with peak data rates of up to 15 Mbps.  In this 
paper, we describe an object code compatible version 2.0 
of the Sandblaster architecture, which is targeted at the 
4G standards, which have support higher data-rates and 
more complex algorithms. 

To achieve the necessary performance to implement 
4G standards, the 2.0 version of the architecture extends 
the 4-MAC Sandblaster 1.0 architecture to a 16-MAC 
architecture, with accompanying changes in the width of 
the vector register file. It also introduces new vector 
operations that are specialized to key algorithms specified 
in the 4G standards.  

The architectural enhancements have been 
implemented in the SB3500 chip fabricated in low power 
65nm process technology. The chip is fully functional, 
provides nearly 30 GMACs of DSP performance at 
600MHz and validates the design objectives of the 4G 
standards. 

1. INTRODUCTION 

Experience with programming various 3G standards on 
the SB3010 and SB3011 chip implementations [1] of the 
original Sandblaster 1.0 architecture [2] identified certain 
areas for architectural improvement to support higher 
datarates [3]. Also, the next set of wireless standards (so-
called 4G), such as WiMax and LTE, would require more 
processing power than could be provided by a low-power 
implementation of the 1.0 architecture. The Sandblaster 
2.0 architecture was developed so as to allow the software 

implementation of the physical layer of the various 3.5G 
and 4G standards. 

The most significant change to the architecture is the 
introduction of 16-wide vector operations, in contrast to 
the 4-wide vector operations of the original 1.0 
architecture. Also, the 2.0 architecture contains 
instructions that are specialized for the efficient execution 
of key 3.5G and 4G kernels. 

Section 2 of this paper gives an overview of the 
architecture. Section 3 focuses on the 16-wide vector 
operations. Section 4 discusses additional enhancements. 
The SB3500 chip is presented in Section 5. The 
performance achievable from these changes is discussed 
in Section 6. We present related work in Section 7 and 
provide concluding remarks in Section 8. 

2.  ARCHITECTURE OVERVIEW 

The Sandblaster architecture uses a 64-bit instruction 
word, which consist of a serial S-bit and up to 3 21-bit 
compound operations.  If the S-bit is not set (e.g. 0), then 
all 3 operations are executed in parallel, otherwise they 
are executed serially. If an operation in a serial instruction 
is a taken branch, then operations subsequent to the 
branch will not be executed. All branches are to 8 byte 
boundaries. In particular, it is not possible to branch into 
the middle of an instruction word, even if that instruction 
is a serial instruction.  

There are 4 categories of operations: branch, integer, 
memory and vector. A parallel instruction can contain at 
most one operation from each category; a serial 
instruction has no such restriction. 

 The Sandblaster architecture specifies several 
heterogeneous register files. In general, a register file is 
accessed by only one category of instructions. A list of 
the more commonly used registers and their properties 
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al purpose and vector registers can be loaded from or 
stored to memory. The other registers must be moved 
to/from a general purpose register using the copy from/to 
special purpose register (cfsr/ctsr) operations. The 
cfsr/ctsr instructions are also used for accessing system 
specific registers.  

The Sandblaster architecture is a load/store 
architecture; i.e. only load or store operations access 
memory. These operations are register+immediate 
addressing, where the base is provided by a General 
Purpose Register (GPR).  

Only the GPR and vector registers can be load/store 
targets/sources. Note that this implies that the memory 
data-path is 256 bits wide. Also, the architecture provides 
a 32-bit address space. 

Loads to the vector register file can either load in 
forward order, so that when loading an array of shorts, the 
value at index 0 is loaded into bits 0..15 of the register, or 
in reverse order, so that value at index 0 is loaded into 
bits 240..255 of the register. The increment may be  
computed automatically based on a 4-wide or 16-wide 
vector operation. 

Figure 2 shows some examples of operation 
encodings for the various operations. The 5-bit major 
opcode identifies the category the operation belongs to. 
The minor and extended minor fields further identify the 
function. Generally, most registers accessed by an 
operation are explicitly encoded, and operations are non-
destructive (i.e. a register field does not encode both a 
source and a target register). However, this is not 
universally true. For example: 
• add-with-carry implicitly uses cb0 for the carry bit, 

both reading and writing it. 
• load-and-update reads ra for the address base 

computes base+imm and writes that value to ra, as 
well as using the value as the address to load into rt. 
An operation with an immediate value can be 

encoded in an instruction word with an immediate-
extender operation next to it. In that case, the immediate 
value is extended by 12 bits from the second operation.  

3. VECTOR UNIT 

The biggest change between the Sandblaster 1.0 and 2.0 
architectures is the vector operations and registers. 

 The vector registers in the 1.0 architecture were 160 bits 
wide, and were connected to memory by a 64-bit data-
path. In the 2.0 architecture, the vector registers are 256-
bit wide and connected to memory using a 256 bit data 
path. Further, the mask and accumulator registers have 
been expanded from 4 & 40 bits to 32 and 64 bits 
respectively. 

In most cases, a SIMD operation in the 1.0 
architecture operated on 4 values in parallel. By contrast, 
the 2.0 architecture operates on 16 short (16-bit) values or 
8 (32-bit) integer values in parallel. Also, the 1.0 
operations were fairly general-purpose. In the 2.0 
architecture, the general purpose operations are 
augmented by operations specialized for key kernels of 
4G wireless communications systems. 

3.1. Element-wise operations 

The element-wise operations include common operations 
such as logical, shift and arithmetic operations that read 2 
registers, perform 16 short or 8 integer operations in 
parallel, and write the results back to a third register. An 
example would be the element-wise add integer 
operation, radd32: 
for(i=0; i<8; i++) 
  vt[i] = va[i] + vb[i]; 

In this operation, the registers va, vb, and vt are 
interpreted as storing 8 32-bit values. 

Element-wise multiplies are only done on short 
values; a single operation can specify 16 short multiplies 
to be done in parallel. In one set of variants, either the 
upper or lower 16 bits of the 32 bit product are written as 
the result, as in the rmul operation: 
for( i=0; i <16; i++ ) 
   vt[i] = (va[i]*vb[i])&0xffff; 

Name Number Bits Category Notes 
General 
Purpose 16 32 Integer, 

Memory 
can be 

loaded/stored 

Condition 8 1 Branch cb0 also set/used 
by integer 

Jump Target 2 32 Branch  
Loop Count 2 32 Branch  

Vector 8 256 Vector can be 
loaded/stored 

Mask 4 32 Vector  
Accumulator 4 64 Vector  

Search 2 32 Vector  
Table 1: Register files 

major rt immra mino
20 16 15 12 11 8 7 4 3 0

major rt rb ra mino
20 16 15 12 11 8 7 4 3 0

major cb imm8 mino
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Alternatively, the full 32 bit product may be written to 2 
registers. There are also multiply-and-add or subtract 
variants.  

Complex multiplies treat the register file contents as 
though they were alternating short real and imaginary 
values, so that a register contains 8 short complex 
numbers. A complex multiply uses 4 short multipliers, so 
implementing 8 complex multiplies in parallel would 
have required 32 multipliers. Instead, the Sandblaster 2.0 
complex multiply operations multiply either the upper or 
lower halves of registers together, writing the complex 
product to the upper or lower half of the result register. 

There are both element-wise 8-wide integer and 16-
wide short compares. The result of the compare is written 
to the lower 8/16 bits of a mask register. The contents of 
the mask register can then be used to select between the 
elements of two registers. Element-wise max and min 
operations combine the effects of a compare greater/less 
than and select operations together, as is show in the 
pseudo code for rmax: 
for( i=0; i<16; i++ ) 
  mr[i] = va[i]>vb[i]; 
  vt[i] = mr[i]?va[i]:vb[i]; 

Element-wise masked sum operations sum together 
different arrangements of pairs of elements from the input 
registers. These operations use the bits in the mask 
register to determine whether the corresponding element 
should be negated or not prior to adding. For example,   
rmsum: 
for( i=0; i<16; i++ ) 
  a = mr[i]?-va[i]:va[i]; 
  b = mr[16+i]?-vb[i]:vb[i]; 
  vt[i] = a + b; 

3.2. Reduction operations 

Reduction operations take the multiple elements of a 
vector and combine the values into a scalar result, which 
is then written to an accumulator register.  

The multiply reduction operations do element-wise 
multiplies, and then sum the products together. For 
example rmulred:  
for(i=0; i<16; i++) 
  act += va[i] * vb[i]; 

where act is the lower 32 bits of the accumulator target 
register. 

Complex multiplies can also be reduced; in this case, 
the 32 bits of the real part of the sum are stored in the 
lower 32 bits of the accumulator and the imaginary part of 
the sum is stored in the upper 32 bits of the accumulator. 

Masked sum operations can also be reduced. These 
come in two variants; one adds up all the sums. The other 
variant adds up half the sums into the lower 32 bits of the 

accumulator and the adds up the other half into the upper 
32 bits of the accumulator. 

Search operations are also a type of reduction 
operation. The elements of a register are compared 
against each other and an accumulator to find the 
maximum (or minimum). These instructions also modify 
a pair of registers - the position and count registers - so 
that the position of the maximum/minimum can be 
determined. This is illustrated by the rsearchmin 
operation: 
for( i=0; i<16; i++ ) 
  if( va[i] < act ) 
    act = va[i]; 
    pos = count; 
  count++ 

To search an array for the minimum value, first the count 
and pos values are cleared using the ctsr register, and the 
act register is set to 0x7fff_ffff. After a sequence of 
rsearchmin operations, act will contain the smallest value 
seen so far, count will contain the number of array 
elements examined, and pos will contain the position 
where the smallest value was encountered. 

3.3. Specialized operations 

Significantly, the Sandblaster 2.0 architecture introduced 
groups of vector operations designed to improve the 
performance of specific algorithms required by the 4G 
standards. 

One group of operations is used to implement fast-
fourier transforms (FFTs). These operations do 4 complex 
multiplies per cycle, producing 8 complex elements of the 
result. Depending on the operation, the values are either 
written to one register or to the upper/lower halves of two 
registers. 

Galois field arithmetic support is provided by 
operations that do polynomial multiply, multiply-reduce 
and multiply-and-add and compute the polynomial-
modulus. 

Viterbi decoding adds operations that perform 16 
viterbi butterflies in parallel, reading 3 registers (2 for the 
state and 1 for weight) and writing the resulting state into 
2 registers. The trace-back bits are written to the 
accumulator registers. There are also flavors of the 
masked sum operations that are used to compute the 
branch metrics from the input samples. 

Turbo decoding is supported by operations that 
compute the forward, backward and likelihood values. 
The turbo-decode operations assume that the constraint 
length of the convolutional coders is 3. They execute two 
steps of the forward (or backward) pass per operation. In 
addition, they may combine the forward (backward) steps 
with the result of prior backward (forward) steps to 
compute the likelihood. This likelihood is stored in an 
accumulator register. 



Dibit turbo decode is supported by similar 
operations. However, dibit turbo-decoding only does one 
step of the forward/backward pass per operation. 

3.4. Other operations 

The other vector operations rearrange data in the 
registers. These include: 
• packing/unpacking 8 bit data to 16 bit data 
• packing/unpacking 16 bit data to 32 bit data, 
• shuffling the elements of a pair of register 
• copying the contents of an accumulator to all 

elements of a register 
• rotating register pairs 
• shifting accumulator data into a register 

3.5. Fixed point operations. 

Digital signal processing typically uses fixed-point 
arithmetic. Consequently, all the vector operations that do 
addition, subtraction, multiplies, and left-shift have a 
fixed-point version. Further, operations such as complex-
multiplies and the specialized operations come only in the 
fixed point versions. 

Fixed point arithmetic differs from the standard 2s 
complement arithmetic in several ways: 
• a fixed point multiply is further multiplied by 2 
• if the result of an arithmetic operation overflows the 

number of bits available, it is saturated to the 
maximum/minimum representable value 

• when converting from a type with more bits to fewer 
bits, the upper bits are used. 

The following pseudo-code for a fixed-point 16 bit 
multiply producing a 16 bit result illustrates all these 
features: 
long long p; // extra bits to keep track 
              // of overflow 
p = x*y; 
// fixed point multiply 
p = p*2; 
// saturation 
if(p > 0x7fff_ffff ) 
  p = 0x7fff_ffff; 
else if( p < -0x8000_0000 ) 
  p = -0x8000_0000; 
// convert to 16-bit 
z = (p>>16)&0xffff 

When an operation does a sequence of fixed-point 
arithmetic computations, one can saturate after each 
intermediate computation. Alternatively, one can keep all 
intermediate results at full precision (i.e. use enough bits 
so that there is no possibility of overflow) and then 
saturate the combined result. The vector operations from 
the Sandblaster 1.0 architecture saturated after each 

intermediate operation [4]; the operations introduced in 
the 2.0 architecture saturate only the final result. 

3.6. Rotation/Shifting 

Many wireless kernels involve data-streaming, which 
involve operating on subsequences of data offset from 
each other by one or two positions. For example, consider 
a 16-tap FIR filter: 
for( j=0; j<M; j++ ) 
  sum = 0; 
  for( i=0; i<16; j++) 
    sum += x[i+j]*c[i]; 
  z[i] = sum 

In this example, the dot-product of c[0..15] with x[0..15] 
is computed, then the dot-product with x[1..16], x[2..17] 
and so on. The 2.0 architecture supports this idiom 
through register pair rotation. 

In register pair register rotation, each pair of 
even/odd registers is treated as a circular shift register. 
The values in them can be shifted by 1, 2 or 4 shorts. The 
pseudo-code below illustrates the 1-short (i.e. 16 bit) 
rotate: 
val_e0 = ve[0]; 
val_o15 = vo[15]; 
for( i=0; i<15; i++ ) 
  ve[i] = ve[i+1]; 
  vo[i+1] = vo[i-1]; 
ve[15] = val_o15; 
vo[0] = val_e0; 

Note that elements in the even and odd registers are 
shifted in opposite directions by a rotate. 

Array x from in the example can be streamed using 
the register rotation operation, rrot, as follows: 
• load x[0..15] into an even register 
• load x[16..31] into an odd register in reverse order 
• after every complete execution of the inner loop, 

rotate the even/odd pair by 1. 
• After 16 iterations of the outer loop, load the next 16 

values of the x array into the odd register, in reverse 
order 

Shifting can also be used to save a series of accumulated 
values. Reduction operations as well as certain 
specialized operations store their result into accumulator 
registers. The rshift operation can then shift the value 
from an accumulator into a vector file, as shown in the 
following pseudo-code: 
for( i=0; i<15 i++ ) 
  ve[i] = ve[i+1]; 
ve[15] = aca; 

In this example, 16 bits from the accumulator are shifted 
into an even register. If the target had been an odd vector 
register, it would have been in the opposite direction, as 
in the rotate instructions. Different variants of the 
instruction can shift different 16, 32, and 64 bits from an 
accumulator into the vector register. The rshift0 operation 



additionally clears (i.e. sets to 0) the shifted accumulator 
register. 

A 16 tap FIR filter would use a rmulreds, rshift0 and 
rrot operation. Of these, 1 operation is to do the actual 
computation and the other 2 are overhead to rearrange the 
data. This is a fairly common occurrence. Consequently, 
the architecture has some operations that combine an 
operation with accumulator shifting and clear and 
register-pair rotation. These include the rmulreds1r 
operation. 

4. OTHER CHANGES 

There have been other extensions made to the Sandblaster 
2.0 architecture to allow it to better handle DSP 
algorithms. 

4.1. I-cache 

The Sandblaster 2.0 architecture adds operations to 
control the instruction cache. These are part of the branch 
category, and use the jump-target registers to specify a 
instruction address. This address is used by operations to 
flush a set and to prefetch an instruction into the cache.  

The prefetch instructions allow the cache to be 
warned up, so that the initial cold-miss penalty can be 
avoided. This improves the worst-case run-time of an 
algorithm, thereby improving real-time performance. 

4.2. Integer unit 

The integer unit has added several operations. These are: 
• Parity: compute the even parity of a word 
• Galois field: compute the polynomial product and 

modulo. These operations are similar to the 
operations in the vector unit. 

• Reversal: swap the bits or bytes of a word.  
• Traceback: help traverse the trace-back array 

generated by the viterbi vector operations. One 
operation generates the address of the next word, and 
the other extracts the appropriate bit. 

4.3. DMA 

In most systems, a direct memory access (DMA) engine is 
provided as a memory-mapped peripheral. The 
Sandblaster 2.0 architecture, the DMA has been made 
part of the architecture. The DMA control registers are 
part of the architected state, and accessed via cfsr/ctsr 
instructions. A process can be swapped even if it has a 
DMA operation in flight; the DMA is architected so that a 
DMA operation can be halted in-flight and the control 
registers copied out. After the process has been resumed, 

the control registers can be restored, and the DMA 
restarted from where it was halted. 

The DMA also implements scatter and gather 
functions. Thus, apart from block copies, the DMA can be 
programmed to implement gathers: 
for(i=0; i<N; i++) 
  dest[i] = src[off[i]]; 

and scatters 
for(i=0; i<N; i++ ) 
  dest[off[i]] = src[i]; 

The scatter and gather can occur at a granularity of 1, 2, 4 
or 8 bytes. 

Various wireless algorithms require permutation of 
large amounts of data. For example, turbo-decoding 
requires input data and likelihood to be repeatedly 
interleaved. The scatter DMA allows for efficient 
implementation of the algorithm. 

5. SB3500 CHIP IMPLEMENTATION 

The architecture enhancements have been incorporated 
into the SB3500 chip implementation. As shown in 
Figure 1, the chip contains 3 Sandblaster 2.0 cores. Each 
of the cores typically runs at 600MHz while providing 
twice the power efficiency of the SB3011 chip design. 
The peak performance of the chip is nearly 30 GMACs at 
handset power dissipation levels. The same as with the 
SB3011 chip implementation, the chip contains a full 
ARM subsystem with all the peripherals required to 
operate a smart phone device including USB 2.0, camera, 
video, smart card, SIM, keyboard, and LCD ports. The 
chip is enhanced with a split transaction AXI bus to allow 
HD video processing while performing 4G baseband 
communications. The chip is fabricated in 65nm 
technology and is fully functional. 

 

6. RESULTS 

On the Sandblaster 1.0 architecture we have implemented 
multiple real-time communications systems including 
WCDMA [12], GSM/GPRS [13], 1xEVDO [14], TD-
SCDMA [15] , NTSC Video Decode [16], WiMax [17], 
WiFi [18], GPS [19], AM/FM radio [20], DVB [21], and 
SINCGARS [22]. Based on the analysis of these systems 
combined with 4G WiMax and LTE analysis, we have 
implemented kernels for various wireless standards, and 
measured the number of instructions used. Some of the 
results are summarized in Table 2. As can be seen, the 
combination of specialized operation support and 
combined compute/rotate/shift operations allow us to 
achieve close to optimal performance.  
 
 



Algorithm Type/Phase Instructions 

FIR 16-tap real 1 /output 
16-tap 
complex 

2 /complex output 

FFT Core N/6*(logN-1)  
bit-reversal N/3 for N point FFT 

64 state 
Viterbi 

forward pass 2 per bit 
Traceback 2 per bit 

Turbo 
decode 

Forward 21/32 per bit 
Backward+ 
likelihood 

22/32 per bit 

Dibit 
turbo 
decode 

Forward 12/8 per dibit 
Backward+ 
likelihood 

13/8 per dibit 

Table 2: Performance 

While not completely described at the system level, these 
performance results enable the real-time software 
execution of high data rate 4G systems. 
 

7. RELATED WORK 

In this section we contrast and compare our approach to 
other processor designs. Other SDR platforms include the 
Signal Processing on Demand Architecture (SODA) [5], 
OnDSP [6], the Embedded Vector Processor (EVP) [7], 
the Synchronous Transfer Architecture (STA) [8], 
picoArray [10], XiSystem  [9], and the MS1 
reconfigurable DSP (rDSP) Core [11].   

SODA is a programmable SDR platform that consists 
of four processor cores. Each core contains scratchpad 
memories and asymmetric pipelines that support scalar, 
32-wide SIMD, and address generation operations. 
SODA is optimized for 16-bit arithmetic and features 
several specialized operations including saturating 
arithmetic, vector permute, vector compare and select, 
and predicated negation operations.    

OnDSP, EVP, and STA all are VLIW architectures 
with support for multiple parallel scalar, vector, memory 
access, and control operations. For example, OnDSP 
provides 8-element vector operations that can operate in 
parallel with scalar operations. With EVP, the maximum 
VLIW-parallelism available is five vector operations, four 
scalar operations, three address updates, and loop-control. 
All three architectures feature dedicated instructions for 
wireless communications algorithms, such as FFTs and 
Viterbi, Reed-Solomon, and Turbo coding. STA utilizes a 
machine description file to facilitate the generation of 
different hardware and simulation models for the 
processor.  

picoArray is a tiled architecture in which hundreds of 
heterogeneous processor are interconnected using a bus-
based array. Within the picoArray, processors are 
organized in a two dimensional grid, and communicate 
over a network of 32-bit unidirectional buses and 
programmable bus switches.  Each programmable 
processor in the array supports 16-bit arithmetic, uses 3-
way VLIW scheduling, and has its own local memory. In 
addition to the programmable processors, the picoArray 
includes specialized peripherals and connects to hardware 
accelerators for performing FFTs, cryptography, and 
Reed-Solomon and Viterbi coding.  

XiSystem and the MS1 rDSP Core combine 
programmable processors with reconfigurable logic to 
implement wireless communication systems. XiSystem 
integrates a VLIW processor, a multi-context 
reconfigurable gate array, and reconfigurable I/O modules 
in a SoC platform. The multi-context reconfigurable gate 
array enables dynamic instruction set extensions for bit-
level operations needed in many DSP applications. The 
MS1 rDSP Core contains a reconfigurable logic block, 
called the RC Array, a 32-bit RISC processor, called 
mRISC, a context memory, a data buffer, and an I/O 
controller. The mRISC processor controls the RC array, 
which performs general purpose operations, as well as 
word-level and bit-level DSP functions.  

8. CONCLUSIONS 

We have presented an architectural description of the next 
generation Sandblaster 2.0 architecture. We have 
described the major enhancement to the base 1.0 
architecture that includes wider vectors and application 
specific instruction support. We have briefly described 
the SB3500 chip implementation that incorporates the 
architectural extensions. The chip validates the 
performance and power design objectives of the 
architecture. Based on previously implemented systems 
along with the kernel analysis we can implement future 
4G standards completely in software on implementations 
of this processor. 
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