
THE SANDBLASTER 2.0 ARCHITECTURE AND SB3500 IMPLEMENTATION

Mayan Moudgill, John Glossner, Sitij Agrawal, and Gary Nacer

Sandbridge Technologies, Inc.
Tarrytown, NY 10601 USA

glossner@sandbridgetech.com

 ABSTRACT

The Sandblaster architecture is a high-performance vector
architecture targeted at digital signal processing
applications. The Sandblaster 1.0 architecture was
targeted at implementing the physical layer of 3G wireless
standards, with peak data rates of up to 15 Mbps. In this
paper, we describe an object code compatible version 2.0
of the Sandblaster architecture, which is targeted at the
4G standards, which have support higher data-rates and
more complex algorithms.

To achieve the necessary performance to implement
4G standards, the 2.0 version of the architecture extends
the 4-MAC Sandblaster 1.0 architecture to a 16-MAC
architecture, with accompanying changes in the width of
the vector register file. It also introduces new vector
operations that are specialized to key algorithms specified
in the 4G standards.

The architectural enhancements have been
implemented in the SB3500 chip fabricated in low power
65nm process technology. The chip is fully functional,
provides nearly 30 GMACs of DSP performance at
600MHz and validates the design objectives of the 4G
standards.

1. INTRODUCTION

Experience with programming various 3G standards on
the SB3010 and SB3011 chip implementations [1] of the
original Sandblaster 1.0 architecture [2] identified certain
areas for architectural improvement to support higher
datarates [3]. Also, the next set of wireless standards (so-
called 4G), such as WiMax and LTE, would require more
processing power than could be provided by a low-power
implementation of the 1.0 architecture. The Sandblaster
2.0 architecture was developed so as to allow the software

implementation of the physical layer of the various 3.5G
and 4G standards.

The most significant change to the architecture is the
introduction of 16-wide vector operations, in contrast to
the 4-wide vector operations of the original 1.0
architecture. Also, the 2.0 architecture contains
instructions that are specialized for the efficient execution
of key 3.5G and 4G kernels.

Section 2 of this paper gives an overview of the
architecture. Section 3 focuses on the 16-wide vector
operations. Section 4 discusses additional enhancements.
The SB3500 chip is presented in Section 5. The
performance achievable from these changes is discussed
in Section 6. We present related work in Section 7 and
provide concluding remarks in Section 8.

2. ARCHITECTURE OVERVIEW

The Sandblaster architecture uses a 64-bit instruction
word, which consist of a serial S-bit and up to 3 21-bit
compound operations. If the S-bit is not set (e.g. 0), then
all 3 operations are executed in parallel, otherwise they
are executed serially. If an operation in a serial instruction
is a taken branch, then operations subsequent to the
branch will not be executed. All branches are to 8 byte
boundaries. In particular, it is not possible to branch into
the middle of an instruction word, even if that instruction
is a serial instruction.

There are 4 categories of operations: branch, integer,
memory and vector. A parallel instruction can contain at
most one operation from each category; a serial
instruction has no such restriction.

 The Sandblaster architecture specifies several
heterogeneous register files. In general, a register file is
accessed by only one category of instructions. A list of
the more commonly used registers and their properties

can
be
foun
d in
Table
1.
Only
the
gener10-50

MHz

TAP
(JTAG)

AXI

APB

Camera Interface
LCD Interface

HSN AMBA
Bridge

HSN

Audio
Codec

UART
/ IrDAPS/2 SPI Smart

Card I2CTimers
(2)

Timers
(2)

Dynamic Memory
Controller

SHB

Node
1

SPI / I2C

MPTMPTMPTMPTMPTMPT

Core 1

Local External ICache

SBX
MemoryCore 1

Local External ICache

SBX
Memory

Node
2

Node GPIO

MPT MPTMPT MPT MPTMPT

Node
3

MPT MPTMPT MPT MPTMPT

Core 3
LocalExternal

ICache

SBX
Memory

SPI / I2C

SBX Complex

Core 2
Local External

ICache

SBX
Memory

AHB

Static
Memory Controller

SDIO Interface

I2S

SHB SHB

Int. Clks

DPMU APB
DPMU

AXI AMBA2
Bridge

DMA

ARM
Ext Interface

4KB Mail-Box

P
S
D

P
S
D

P
S
D

P
S
D

DPMU

S PLL

A PLL

USB Interface

General
Purpose I/OGeneral

Purpose I/O
General

Purpose I/O
GPIO

(8)

General
Purpose I/OGeneral

Purpose I/O
General

Purpose I/O
GPIO

(8)

Device Controller

D

I

PSD
PSD
PSD
PSD

Node GPIO

Node GPIO

Figure 1 SB3500 Chip

al purpose and vector registers can be loaded from or
stored to memory. The other registers must be moved
to/from a general purpose register using the copy from/to
special purpose register (cfsr/ctsr) operations. The
cfsr/ctsr instructions are also used for accessing system
specific registers.

The Sandblaster architecture is a load/store
architecture; i.e. only load or store operations access
memory. These operations are register+immediate
addressing, where the base is provided by a General
Purpose Register (GPR).

Only the GPR and vector registers can be load/store
targets/sources. Note that this implies that the memory
data-path is 256 bits wide. Also, the architecture provides
a 32-bit address space.

Loads to the vector register file can either load in
forward order, so that when loading an array of shorts, the
value at index 0 is loaded into bits 0..15 of the register, or
in reverse order, so that value at index 0 is loaded into
bits 240..255 of the register. The increment may be
computed automatically based on a 4-wide or 16-wide
vector operation.

Figure 2 shows some examples of operation
encodings for the various operations. The 5-bit major
opcode identifies the category the operation belongs to.
The minor and extended minor fields further identify the
function. Generally, most registers accessed by an
operation are explicitly encoded, and operations are non-
destructive (i.e. a register field does not encode both a
source and a target register). However, this is not
universally true. For example:
• add-with-carry implicitly uses cb0 for the carry bit,

both reading and writing it.
• load-and-update reads ra for the address base

computes base+imm and writes that value to ra, as
well as using the value as the address to load into rt.
An operation with an immediate value can be

encoded in an instruction word with an immediate-
extender operation next to it. In that case, the immediate
value is extended by 12 bits from the second operation.

3. VECTOR UNIT

The biggest change between the Sandblaster 1.0 and 2.0
architectures is the vector operations and registers.

 The vector registers in the 1.0 architecture were 160 bits
wide, and were connected to memory by a 64-bit data-
path. In the 2.0 architecture, the vector registers are 256-
bit wide and connected to memory using a 256 bit data
path. Further, the mask and accumulator registers have
been expanded from 4 & 40 bits to 32 and 64 bits
respectively.

In most cases, a SIMD operation in the 1.0
architecture operated on 4 values in parallel. By contrast,
the 2.0 architecture operates on 16 short (16-bit) values or
8 (32-bit) integer values in parallel. Also, the 1.0
operations were fairly general-purpose. In the 2.0
architecture, the general purpose operations are
augmented by operations specialized for key kernels of
4G wireless communications systems.

3.1. Element-wise operations

The element-wise operations include common operations
such as logical, shift and arithmetic operations that read 2
registers, perform 16 short or 8 integer operations in
parallel, and write the results back to a third register. An
example would be the element-wise add integer
operation, radd32:
for(i=0; i<8; i++)
 vt[i] = va[i] + vb[i];

In this operation, the registers va, vb, and vt are
interpreted as storing 8 32-bit values.

Element-wise multiplies are only done on short
values; a single operation can specify 16 short multiplies
to be done in parallel. In one set of variants, either the
upper or lower 16 bits of the 32 bit product are written as
the result, as in the rmul operation:
for(i=0; i <16; i++)
 vt[i] = (va[i]*vb[i])&0xffff;

Name Number Bits Category Notes
General
Purpose 16 32 Integer,

Memory
can be

loaded/stored

Condition 8 1 Branch cb0 also set/used
by integer

Jump Target 2 32 Branch
Loop Count 2 32 Branch

Vector 8 256 Vector can be
loaded/stored

Mask 4 32 Vector
Accumulator 4 64 Vector

Search 2 32 Vector
Table 1: Register files

major rt immra mino
20 16 15 12 11 8 7 4 3 0

major rt rb ra mino
20 16 15 12 11 8 7 4 3 0

major cb imm8 mino
20 16 15 12 11 4 3 0

c
14

major vt vb va minovc
20 16 15 12 10 9 7 4 3 013 6

major vt vb va ext-minor
20 16 15 12 10 9 7 013 6

memory

integer

cond
b hvect-4

vect-16

Figure 2 Operation formats

Alternatively, the full 32 bit product may be written to 2
registers. There are also multiply-and-add or subtract
variants.

Complex multiplies treat the register file contents as
though they were alternating short real and imaginary
values, so that a register contains 8 short complex
numbers. A complex multiply uses 4 short multipliers, so
implementing 8 complex multiplies in parallel would
have required 32 multipliers. Instead, the Sandblaster 2.0
complex multiply operations multiply either the upper or
lower halves of registers together, writing the complex
product to the upper or lower half of the result register.

There are both element-wise 8-wide integer and 16-
wide short compares. The result of the compare is written
to the lower 8/16 bits of a mask register. The contents of
the mask register can then be used to select between the
elements of two registers. Element-wise max and min
operations combine the effects of a compare greater/less
than and select operations together, as is show in the
pseudo code for rmax:
for(i=0; i<16; i++)
 mr[i] = va[i]>vb[i];
 vt[i] = mr[i]?va[i]:vb[i];

Element-wise masked sum operations sum together
different arrangements of pairs of elements from the input
registers. These operations use the bits in the mask
register to determine whether the corresponding element
should be negated or not prior to adding. For example,
rmsum:
for(i=0; i<16; i++)
 a = mr[i]?-va[i]:va[i];
 b = mr[16+i]?-vb[i]:vb[i];
 vt[i] = a + b;

3.2. Reduction operations

Reduction operations take the multiple elements of a
vector and combine the values into a scalar result, which
is then written to an accumulator register.

The multiply reduction operations do element-wise
multiplies, and then sum the products together. For
example rmulred:
for(i=0; i<16; i++)
 act += va[i] * vb[i];

where act is the lower 32 bits of the accumulator target
register.

Complex multiplies can also be reduced; in this case,
the 32 bits of the real part of the sum are stored in the
lower 32 bits of the accumulator and the imaginary part of
the sum is stored in the upper 32 bits of the accumulator.

Masked sum operations can also be reduced. These
come in two variants; one adds up all the sums. The other
variant adds up half the sums into the lower 32 bits of the

accumulator and the adds up the other half into the upper
32 bits of the accumulator.

Search operations are also a type of reduction
operation. The elements of a register are compared
against each other and an accumulator to find the
maximum (or minimum). These instructions also modify
a pair of registers - the position and count registers - so
that the position of the maximum/minimum can be
determined. This is illustrated by the rsearchmin
operation:
for(i=0; i<16; i++)
 if(va[i] < act)
 act = va[i];
 pos = count;
 count++

To search an array for the minimum value, first the count
and pos values are cleared using the ctsr register, and the
act register is set to 0x7fff_ffff. After a sequence of
rsearchmin operations, act will contain the smallest value
seen so far, count will contain the number of array
elements examined, and pos will contain the position
where the smallest value was encountered.

3.3. Specialized operations

Significantly, the Sandblaster 2.0 architecture introduced
groups of vector operations designed to improve the
performance of specific algorithms required by the 4G
standards.

One group of operations is used to implement fast-
fourier transforms (FFTs). These operations do 4 complex
multiplies per cycle, producing 8 complex elements of the
result. Depending on the operation, the values are either
written to one register or to the upper/lower halves of two
registers.

Galois field arithmetic support is provided by
operations that do polynomial multiply, multiply-reduce
and multiply-and-add and compute the polynomial-
modulus.

Viterbi decoding adds operations that perform 16
viterbi butterflies in parallel, reading 3 registers (2 for the
state and 1 for weight) and writing the resulting state into
2 registers. The trace-back bits are written to the
accumulator registers. There are also flavors of the
masked sum operations that are used to compute the
branch metrics from the input samples.

Turbo decoding is supported by operations that
compute the forward, backward and likelihood values.
The turbo-decode operations assume that the constraint
length of the convolutional coders is 3. They execute two
steps of the forward (or backward) pass per operation. In
addition, they may combine the forward (backward) steps
with the result of prior backward (forward) steps to
compute the likelihood. This likelihood is stored in an
accumulator register.

Dibit turbo decode is supported by similar
operations. However, dibit turbo-decoding only does one
step of the forward/backward pass per operation.

3.4. Other operations

The other vector operations rearrange data in the
registers. These include:
• packing/unpacking 8 bit data to 16 bit data
• packing/unpacking 16 bit data to 32 bit data,
• shuffling the elements of a pair of register
• copying the contents of an accumulator to all

elements of a register
• rotating register pairs
• shifting accumulator data into a register

3.5. Fixed point operations.

Digital signal processing typically uses fixed-point
arithmetic. Consequently, all the vector operations that do
addition, subtraction, multiplies, and left-shift have a
fixed-point version. Further, operations such as complex-
multiplies and the specialized operations come only in the
fixed point versions.

Fixed point arithmetic differs from the standard 2s
complement arithmetic in several ways:
• a fixed point multiply is further multiplied by 2
• if the result of an arithmetic operation overflows the

number of bits available, it is saturated to the
maximum/minimum representable value

• when converting from a type with more bits to fewer
bits, the upper bits are used.

The following pseudo-code for a fixed-point 16 bit
multiply producing a 16 bit result illustrates all these
features:
long long p; // extra bits to keep track
 // of overflow
p = x*y;
// fixed point multiply
p = p*2;
// saturation
if(p > 0x7fff_ffff)
 p = 0x7fff_ffff;
else if(p < -0x8000_0000)
 p = -0x8000_0000;
// convert to 16-bit
z = (p>>16)&0xffff

When an operation does a sequence of fixed-point
arithmetic computations, one can saturate after each
intermediate computation. Alternatively, one can keep all
intermediate results at full precision (i.e. use enough bits
so that there is no possibility of overflow) and then
saturate the combined result. The vector operations from
the Sandblaster 1.0 architecture saturated after each

intermediate operation [4]; the operations introduced in
the 2.0 architecture saturate only the final result.

3.6. Rotation/Shifting

Many wireless kernels involve data-streaming, which
involve operating on subsequences of data offset from
each other by one or two positions. For example, consider
a 16-tap FIR filter:
for(j=0; j<M; j++)
 sum = 0;
 for(i=0; i<16; j++)
 sum += x[i+j]*c[i];
 z[i] = sum

In this example, the dot-product of c[0..15] with x[0..15]
is computed, then the dot-product with x[1..16], x[2..17]
and so on. The 2.0 architecture supports this idiom
through register pair rotation.

In register pair register rotation, each pair of
even/odd registers is treated as a circular shift register.
The values in them can be shifted by 1, 2 or 4 shorts. The
pseudo-code below illustrates the 1-short (i.e. 16 bit)
rotate:
val_e0 = ve[0];
val_o15 = vo[15];
for(i=0; i<15; i++)
 ve[i] = ve[i+1];
 vo[i+1] = vo[i-1];
ve[15] = val_o15;
vo[0] = val_e0;

Note that elements in the even and odd registers are
shifted in opposite directions by a rotate.

Array x from in the example can be streamed using
the register rotation operation, rrot, as follows:
• load x[0..15] into an even register
• load x[16..31] into an odd register in reverse order
• after every complete execution of the inner loop,

rotate the even/odd pair by 1.
• After 16 iterations of the outer loop, load the next 16

values of the x array into the odd register, in reverse
order

Shifting can also be used to save a series of accumulated
values. Reduction operations as well as certain
specialized operations store their result into accumulator
registers. The rshift operation can then shift the value
from an accumulator into a vector file, as shown in the
following pseudo-code:
for(i=0; i<15 i++)
 ve[i] = ve[i+1];
ve[15] = aca;

In this example, 16 bits from the accumulator are shifted
into an even register. If the target had been an odd vector
register, it would have been in the opposite direction, as
in the rotate instructions. Different variants of the
instruction can shift different 16, 32, and 64 bits from an
accumulator into the vector register. The rshift0 operation

additionally clears (i.e. sets to 0) the shifted accumulator
register.

A 16 tap FIR filter would use a rmulreds, rshift0 and
rrot operation. Of these, 1 operation is to do the actual
computation and the other 2 are overhead to rearrange the
data. This is a fairly common occurrence. Consequently,
the architecture has some operations that combine an
operation with accumulator shifting and clear and
register-pair rotation. These include the rmulreds1r
operation.

4. OTHER CHANGES

There have been other extensions made to the Sandblaster
2.0 architecture to allow it to better handle DSP
algorithms.

4.1. I-cache

The Sandblaster 2.0 architecture adds operations to
control the instruction cache. These are part of the branch
category, and use the jump-target registers to specify a
instruction address. This address is used by operations to
flush a set and to prefetch an instruction into the cache.

The prefetch instructions allow the cache to be
warned up, so that the initial cold-miss penalty can be
avoided. This improves the worst-case run-time of an
algorithm, thereby improving real-time performance.

4.2. Integer unit

The integer unit has added several operations. These are:
• Parity: compute the even parity of a word
• Galois field: compute the polynomial product and

modulo. These operations are similar to the
operations in the vector unit.

• Reversal: swap the bits or bytes of a word.
• Traceback: help traverse the trace-back array

generated by the viterbi vector operations. One
operation generates the address of the next word, and
the other extracts the appropriate bit.

4.3. DMA

In most systems, a direct memory access (DMA) engine is
provided as a memory-mapped peripheral. The
Sandblaster 2.0 architecture, the DMA has been made
part of the architecture. The DMA control registers are
part of the architected state, and accessed via cfsr/ctsr
instructions. A process can be swapped even if it has a
DMA operation in flight; the DMA is architected so that a
DMA operation can be halted in-flight and the control
registers copied out. After the process has been resumed,

the control registers can be restored, and the DMA
restarted from where it was halted.

The DMA also implements scatter and gather
functions. Thus, apart from block copies, the DMA can be
programmed to implement gathers:
for(i=0; i<N; i++)
 dest[i] = src[off[i]];

and scatters
for(i=0; i<N; i++)
 dest[off[i]] = src[i];

The scatter and gather can occur at a granularity of 1, 2, 4
or 8 bytes.

Various wireless algorithms require permutation of
large amounts of data. For example, turbo-decoding
requires input data and likelihood to be repeatedly
interleaved. The scatter DMA allows for efficient
implementation of the algorithm.

5. SB3500 CHIP IMPLEMENTATION

The architecture enhancements have been incorporated
into the SB3500 chip implementation. As shown in
Figure 1, the chip contains 3 Sandblaster 2.0 cores. Each
of the cores typically runs at 600MHz while providing
twice the power efficiency of the SB3011 chip design.
The peak performance of the chip is nearly 30 GMACs at
handset power dissipation levels. The same as with the
SB3011 chip implementation, the chip contains a full
ARM subsystem with all the peripherals required to
operate a smart phone device including USB 2.0, camera,
video, smart card, SIM, keyboard, and LCD ports. The
chip is enhanced with a split transaction AXI bus to allow
HD video processing while performing 4G baseband
communications. The chip is fabricated in 65nm
technology and is fully functional.

6. RESULTS

On the Sandblaster 1.0 architecture we have implemented
multiple real-time communications systems including
WCDMA [12], GSM/GPRS [13], 1xEVDO [14], TD-
SCDMA [15] , NTSC Video Decode [16], WiMax [17],
WiFi [18], GPS [19], AM/FM radio [20], DVB [21], and
SINCGARS [22]. Based on the analysis of these systems
combined with 4G WiMax and LTE analysis, we have
implemented kernels for various wireless standards, and
measured the number of instructions used. Some of the
results are summarized in Table 2. As can be seen, the
combination of specialized operation support and
combined compute/rotate/shift operations allow us to
achieve close to optimal performance.

Algorithm Type/Phase Instructions

FIR 16-tap real 1 /output
16-tap
complex

2 /complex output

FFT Core N/6*(logN-1)
bit-reversal N/3 for N point FFT

64 state
Viterbi

forward pass 2 per bit
Traceback 2 per bit

Turbo
decode

Forward 21/32 per bit
Backward+
likelihood

22/32 per bit

Dibit
turbo
decode

Forward 12/8 per dibit
Backward+
likelihood

13/8 per dibit

Table 2: Performance

While not completely described at the system level, these
performance results enable the real-time software
execution of high data rate 4G systems.

7. RELATED WORK

In this section we contrast and compare our approach to
other processor designs. Other SDR platforms include the
Signal Processing on Demand Architecture (SODA) [5],
OnDSP [6], the Embedded Vector Processor (EVP) [7],
the Synchronous Transfer Architecture (STA) [8],
picoArray [10], XiSystem [9], and the MS1
reconfigurable DSP (rDSP) Core [11].

SODA is a programmable SDR platform that consists
of four processor cores. Each core contains scratchpad
memories and asymmetric pipelines that support scalar,
32-wide SIMD, and address generation operations.
SODA is optimized for 16-bit arithmetic and features
several specialized operations including saturating
arithmetic, vector permute, vector compare and select,
and predicated negation operations.

OnDSP, EVP, and STA all are VLIW architectures
with support for multiple parallel scalar, vector, memory
access, and control operations. For example, OnDSP
provides 8-element vector operations that can operate in
parallel with scalar operations. With EVP, the maximum
VLIW-parallelism available is five vector operations, four
scalar operations, three address updates, and loop-control.
All three architectures feature dedicated instructions for
wireless communications algorithms, such as FFTs and
Viterbi, Reed-Solomon, and Turbo coding. STA utilizes a
machine description file to facilitate the generation of
different hardware and simulation models for the
processor.

picoArray is a tiled architecture in which hundreds of
heterogeneous processor are interconnected using a bus-
based array. Within the picoArray, processors are
organized in a two dimensional grid, and communicate
over a network of 32-bit unidirectional buses and
programmable bus switches. Each programmable
processor in the array supports 16-bit arithmetic, uses 3-
way VLIW scheduling, and has its own local memory. In
addition to the programmable processors, the picoArray
includes specialized peripherals and connects to hardware
accelerators for performing FFTs, cryptography, and
Reed-Solomon and Viterbi coding.

XiSystem and the MS1 rDSP Core combine
programmable processors with reconfigurable logic to
implement wireless communication systems. XiSystem
integrates a VLIW processor, a multi-context
reconfigurable gate array, and reconfigurable I/O modules
in a SoC platform. The multi-context reconfigurable gate
array enables dynamic instruction set extensions for bit-
level operations needed in many DSP applications. The
MS1 rDSP Core contains a reconfigurable logic block,
called the RC Array, a 32-bit RISC processor, called
mRISC, a context memory, a data buffer, and an I/O
controller. The mRISC processor controls the RC array,
which performs general purpose operations, as well as
word-level and bit-level DSP functions.

8. CONCLUSIONS

We have presented an architectural description of the next
generation Sandblaster 2.0 architecture. We have
described the major enhancement to the base 1.0
architecture that includes wider vectors and application
specific instruction support. We have briefly described
the SB3500 chip implementation that incorporates the
architectural extensions. The chip validates the
performance and power design objectives of the
architecture. Based on previously implemented systems
along with the kernel analysis we can implement future
4G standards completely in software on implementations
of this processor.

9. REFERENCES

[1] J. Glossner and D. Iancu, “The Sandbridge SB3011 SDR
Platform” accepted for publication at Symposium on
Trends in Communications (SympoTIC’06), Invited
keynote, Bratislava, Slovakia, June 24-26, 2006.

[2] J. Glossner, E. Hokenek, and M. Moudgill, “Multithreaded
Processor for Software Defined Radio”, Proceedings of the
2002 Software Defined Radio Technical Conference,
Volume I, pp. 195-199, November 11-12, 2002, San Diego,
California.

[3] S. Mamidi, E. R. Blem, M. J. Schulte, J. Glossner, D.
Iancu, A. Iancu, M. Moudgill, and S. Jinturkar, “Instruction
Set Extensions for Software Defined Radio on a
Multithreaded Processor,” Proceedings of the ACM
International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, San Jose, CA, pp. 266-
273, September 2005.

[4] P. Balzola, M. Schulte, J. Ruan, J. Glossner and E.
Hokenek, “Design Alternatives for Parallel Saturating
Multioperand Adders,” in Proceedings of the International
Conference on Computer Design (ICCD 2001), Austin ,
TX, IEEE Computer Society Press, pp. 172-177,
September, 2001.

[5] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge,
C. Chakrabarti, and K. Flautner, “SODA: A Low-power
Architecture For Software Radio,” Proceedings of the 33rd
Intl. Symposium on Computer Architecture, pp. 89-100,
June 2006.

[6] J. Kneip, M.Weiss,W. Drescher, V. Aue, J. Strobel, T.
Oberthür, M. Bolle, and G.Fettweis, “Single Chip
Programmable Baseband ASSP for 5 GHz Wireless LAN
Applications,” IEICE Transactions on Electronics, pp. 359-
367, February 2002.

[7] C. van Berkel, F. Heinle, P.P.E. Meuwissen, K. Moerman,
and Matthias Weiss, “Vector Processing as an Enabler for
Software-Defined Radio in Handheld Devices,” EURASIP
Journal on Applied Signal Processing, Vol. 16, pp. 2613–
2625, 2005.

[8] J.P. Robelly, G. Cichon, H.Seidel, and G. Fettweis, “A
HW/SW Design Methodology for Embedded SIMD Vector
Signal Processors,” International Journal of Embedded
Systems, Vol. 1, No. 11, pp. 2-10, January 2005.

[9] A. Duller, G. Panesar, and D. Towner, “Parallel Processing
— the picoChip Way!,” Communicating Processing
Architectures 2003, pages 125–138, 2003.

[10] A. Lodi, A. Cappelli, M. Bocchi, C. Mucci, M. Innocenti,
C. De Bartolomeis; L. Ciccarelli, R. Giansante, A.
Deledda, F. Campi, M, Toma, R. Guerrieri, “XiSystem: A
XiRisc-Based SoC With Reconfigurable IO Module,” IEEE
Journal of Solid-State Circuits, Vol. 41, No. 1, pp. 85-96,
January 2006.

[11] B. Mohebbi, E. C. Filho, R. Maestre, M. Davies, F. J.
Kurdahi, “A Case Study of Mapping a Software-Defined
Radio (SDR) Application on a Reconfigurable DSP Core,
Proceedings of the International Conference on Codesign
and System Synthesis, pp. 103-103, 2003.

[12] J. Glossner, D. Iancu, E. Hokenek, and M. Moudgill, “A
Reconfigurable Baseband for 2.5/3G and Beyond”,
Proceedings of the 2003 World Wireless Congress, pp.
MC.11-1-6, May 27-30, 2003, San Francisco, California.

[13] R. Kalavai, M. Senthilvelan, S. Agrawal, S. Jinturkar, and
J. Glossner, ” Implementation of GSM/GPRS Physical
Layer on Sandblaster DSP”, Proceedings of Software

Defined Radio Technical Forum (SDR Forum '06),
Orlando, Florida, November, 2006.

[14] S. Watanabe, Y. Kunisawa, D. Kamisaka, A Software
Radio Implementation of CDMA2000 1xEV DO on a
Single DSP Chip Designed for Mobile Hand Terminal,
Proceedings of the IEEE Vehicular Technology
Conference, 25 – 28 September 2006, Montréal, Canada.

[15] S. Shamsunder and J. Glossner, “Reduced Complexity
Software Receivers for TD-SCDMA Downlink“, CD
proceedings at the 2004 Global Signal Processing Expo
(GSPx) and International Signal Processing Conference
(ISPC), Santa Clara, California, September 27-30, 2004.

[16] V. Kotlyar, D. Iancu, J. Glossner, Y. He, and A. Iancu,
“Real-time Software Implementation of NTSC Analog TV
on Sandblaster SDR Platform,” Proceedings of the 4th
Karlsruhe Workshop on Software Radios, Karlsruhe,
Germany, March 22-23, 2006, pp. 171-176.

[17] D. Iancu, H. Ye, E. Surducan, M. Senthilvelan, J. Glossner,
V. Surducan, V. Kotlyar, A. Iancu, G. Nacer, and J. Takala,
“Software Implementation of WiMAX on the Sandbridge
SandBlaster Platform,” Proceedings of the 6th Workshop
on Embedded Computer Systems: Architectures, Modeling,
and Simulation (SAMOS'06), Samos, Greece, July, 2006.

[18] V. Ramadurai, S. Jinturkar, S. Agarwal, M. Moudgill, and
J. Glossner, “Software Implementation of 802.11a blocks
on Sandblaster DSP”, Proceedings of Software Defined
Radio Technical Forum (SDR Forum '06), Orlando,
Florida, November, 2006.

[19] D. Iancu, J. Glossner, H. Ye, M. Moudgill, and V. Kotlyar,
“Rake Receiver Enhanced GPS System”, Proceedings of
Software Defined Radio Technical Forum, Volume A, pp.
97-105, 16-18 November, 2004, Scottsdale, Arizona.

[20] D. Iancu, J. Glossner, H. Ye, Y. Abdelilah, and S. Stanley,
“Reduced Complexity Software AM Radio”, Proceedings
of the Symposium Trends in Communications (SympoTIC
’03), pp. 122-125, Bratislava, SLOVAKIA, 26 – 28
October 2003.

[21] D. Iancu, H. Ye, Y. Abdelilah, E. Surducan, and John
Glossner, “On the Performance of Multiple OFDM
Receivers for DVB” Proceedings of the Joint IST
Workshop on Mobile Future & Symposium on Trends in
Communications (SympoTIC’04), Bratislava, Slovakia, pp.
1-4, October 24-26, 2004.

[22] B. Beheshti, J. Glossner, D. Routenberg, L. Zannella, and
P. Steensma, “Evaluation of Military Waveform Processing
on a COTS Reconfigurable SDR Processing Platform“,
Proceedings of Software Defined Radio Technical Forum,
Volume A, pp. 147-151, 16-18 November, 2004,
Scottsdale, Arizona.

